Comparison of Approaches to Determining the Coefficient of Friction in Stretch-Forming Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Experimental Procedure
2.3. Evaluation of Contact Pressure
2.4. Determination of CoF
3. Results and Discussion
3.1. Stretch-Forming Forces
3.2. Coefficient of Friction
3.3. Surface Roughness of Strip Samples
3.4. Contact Pressure
4. Conclusions
- The BUT test with a stationary countersample resulted in a reduction in sample elongation by over 50% compared to the tests with a freely rotating countersample.
- The smallest friction-induced reduction in strip sample elongation was recorded for the DC01/IOPb+EBM friction pair, demonstrating the high friction conditions in the BUT test.
- Frictional conditions caused an increase in front-tension force compared to freely rotating countersamples, relating to overcoming the frictional resistance.
- For all friction conditions, the highest friction coefficient values were obtained for Equation (9). The lowest CoF value for all friction pairs was obtained for Equation (16).
- Due to the continuous change in the sample surface topography and the contact pressure values during the BUT test, the CoF values are constantly changing.
- The average CoF values, determined for sample elongation between 7% and 12%, showed that the difference between the highest and lowest CoF values, based on the analytical models considered, was approximately 40%.
- Under friction testing with a stationary countersample, the largest increase in average roughness (by 19%) was found for the DC01/IOPb friction pair. The friction process caused a significant decrease in kurtosis values.
- Two pressure peaks were observed along the length of the contact zone, both longitudinally and transverse to the stretching direction. This is related to the effect of bending the material around the cylindrical countersample and the simultaneous stretching of the sample.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Sevšek, L.; Šimic, M.; Herakovič, N.; Pepelnjak, T. Development of an innovative hydraulic press for incremental forming: Machine and process evaluation using a hybrid two-step process. Mater. Des. 2025, 258, 114602. [Google Scholar] [CrossRef]
- Gantar, G.; Pepelnjak, T.; Kuzman, K. Optimization of sheet metal forming processes by the use of numerical simulations. J. Mater. Process. Technol. 2002, 130–131, 54–59. [Google Scholar]
- Balyts’kyi, O.I.; Kolesnikov, V.O.; Kawiak, P. Triboengineering properties of austenitic manganese steels and cast irons under the conditions of sliding friction. Mater. Sci. 2005, 41, 624–630. [Google Scholar] [CrossRef]
- Balyts’kyi, O.I.; Kolesnikov, V.O.; Eliasz, J. Study of the wear resistance of high-nitrogen steels under dry sliding friction. Mater. Sci. 2013, 48, 642–646. [Google Scholar] [CrossRef]
- Sabet, A.S.; Domitner, J.; Öksüz, K.I.; Hodžić, E.; Torres, H.; Rodríguez Ripoll, M.; Sommitsch, C. Tribological investigations on aluminum alloys at different contact conditions for simulation of deep drawing processes. J. Manuf. Process. 2021, 68, 546–557. [Google Scholar] [CrossRef]
- Szwajka, K.; Trzepieciński, T.; Szewczyk, M.; Zielińska-Szwajka, J.; Barlak, M. Investigating Resulting Surface Topography and Residual Stresses in Bending DC01 Sheet Under Tension Friction Test. Lubricants 2025, 13, 255. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Szwajka, K.; Szewczyk, M.; Zielińska-Szwajka, J.; Slota, J.; Kaščák, Ľ. The Effect of the Addition of Silicon Dioxide Particles on the Tribological Performance of Vegetable Oils in HCT600X+Z/145Cr46 Steel Contacts in the Deep-Drawing Process. Materials 2025, 18, 73. [Google Scholar] [CrossRef]
- Evin, E.; Tomáš, M. Influence of Friction on the Formability of Fe-Zn-Coated IF Steels for Car Body Parts. Lubricants 2022, 10, 297. [Google Scholar] [CrossRef]
- Tomków, J.; Czupryński, A.; Fydrych, D. The Abrasive Wear Resistance of Coatings Manufactured on High-Strength Low-Alloy (HSLA) Offshore Steel in Wet Welding Conditions. Coatings 2020, 10, 219. [Google Scholar] [CrossRef]
- Jonda, E.; Fydrych, D.; Łatka, L.; Myalska-Głowacka, H. The Use of Cluster Analysis to Assess the Wear Resistance of Cermet Coatings Sprayed by High Velocity Oxy-Fuel on Magnesium Alloy Substrate. Adv. Sci. Technol. Res. J. 2024, 18, 216–227. [Google Scholar] [CrossRef]
- Wilson, W.R.D.; Sheu, S. Real area of contact and boundary friction in metal forming. Int. J. Mech. Sci. 1988, 30, 475–489. [Google Scholar] [CrossRef]
- Więckowski, W.; Adamus, J.; Dyner, M. Sheet metal forming using environmentally benign lubricant. Arch. Civ. Mech. Eng. 2020, 20, 51. [Google Scholar] [CrossRef]
- Evin, E.; Daneshjo, N.; Mareš, A.; Tomáš, M.; Petrovčiková, K. Experimental Assessment of Friction Coefficient in Deep Drawing and Its Verification by Numerical Simulation. Appl. Sci. 2021, 11, 2756. [Google Scholar] [CrossRef]
- Kohutiar, M.; Krbata, M.; Escherova, J.; Eckert, M.; Mikus, P.; Jus, M.; Polášek, M.; Janík, R.; Dubec, A. The Influence of the Geometry of Movement during the Friction Process on the Change in the Tribological Properties of 30CrNiMo8 Steel in Contact with a G40 Steel Ball. Materials 2024, 17, 127. [Google Scholar] [CrossRef]
- Szewczyk, M.; Mezher, M.T.; Jaber, T.A. The Use of Artificial Neural Networks to the Analysis of Lubricating Performance of Vegetable Oils for Plastic Working Applications. Adv. Mech. Mater. Eng. 2025, 42, 5–15. [Google Scholar] [CrossRef]
- Adamus, J.; Więckowski, W.; Lacki, P. Analysis of the Effectiveness of Technological Lubricants with the Addition of Boric Acid in Sheet Metal Forming. Materials 2023, 16, 5125. [Google Scholar] [CrossRef] [PubMed]
- Tomáš, M.; Evin, E.; Kepič, J.; Hudák, J. Physical Modelling and Numerical Simulation of the Deep Drawing Process of a Box-Shaped Product Focused on Material Limits Determination. Metals 2019, 9, 1058. [Google Scholar] [CrossRef]
- Mulidrán, P.; Spišák, E.; Tomáš, M.; Slota, J.; Majerníková, J. Numerical Prediction and Reduction of Hat-Shaped Part Springback Made of Dual-Phase AHSS Steel. Metals 2020, 10, 1119. [Google Scholar] [CrossRef]
- Pereira, J.F.A.; Prates, P.A.; Butuc, M.C.; Vincze, G. Numerical Study on Continuous-Bending-Under-Tension of 3rd Generation Steel. Metals 2025, 15, 138. [Google Scholar] [CrossRef]
- Martínez-Martínez, A.; Miguel, V.; Coello, J. A numerical model to analyse the under-tension-bending-unbending processes. Special analysis for determining the spring-back of TRIP 690 steel sheet. J. Manuf. Process. 2024, 129, 92–108. [Google Scholar] [CrossRef]
- Nie, N.; Su, L.; Deng, G.; Li, H.; Yu, H.; Tieu, A.K. A review on plastic deformation induced surface/interface roughening of sheet metallic materials. J. Mater. Res. Technol. 2021, 15, 6574–6607. [Google Scholar] [CrossRef]
- Wu, Y.; Recklin, V.; Groche, P. Strain Induced Surface Change in Sheet Metal Forming: Numerical Prediction, Influence on Friction and Tool Wear. J. Manuf. Mater. Process. 2021, 5, 29. [Google Scholar] [CrossRef]
- Wilson, W.R.D.; Malkani, H.G.; Saha, P.K. Boundary friction measurements using a new sheet metal forming simulator. Trans. NAMRI/SME 1991, 18, 37–42. [Google Scholar]
- Swift, H.W. Plastic bending under tension. Engineering 1948, 3, 333–359. [Google Scholar]
- Saha, P.K.; Wilson, W.R.D. Influence of plastic strain on friction in sheet metal forming. Wear 1994, 172, 167–173. [Google Scholar] [CrossRef]
- Andreasen, J.L.; Olsson, D.D.; Chodnikiewicz, K.; Bay, N. Bending under tension test with direct friction measurement. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006, 220, 73–80. [Google Scholar] [CrossRef]
- Sniekers, R.J.J.M.; Smits, H.A.A. Experimental set-up and data processing of the radial strip-drawing friction test. J. Mater. Process. Technol. 1997, 66, 216–623. [Google Scholar]
- Shih, H.-C. Experimental Study on Bendability of Advanced High Strength Steels; SAE Technical Paper, 2024-01-2860; SAE International: Warrendale, PA, USA, 2024; pp. 1–8. [Google Scholar]
- Sharma, R.; Poulin, C.M.; Knezevic, M.; Miles, M.P.; Fullwood, D.T. Micromechanical origins of remarkable elongation-to-fracture in AHSS TRIP steels via continuous bending under tension. Mater. Sci. Eng. A 2021, 825, 141876. [Google Scholar] [CrossRef]
- Hudgins, A.S.; Matlock, D.K.; Speer, J.G.; Fekete, J.R.; Walp, M.S. The Susceptibility to Shear Fracture in Bending of Advanced High Strength. In Proceedings of the Materials Science and Technology 2007, Detroit, MI, USA, 16–20 September 2007; pp. 145–157. [Google Scholar]
- Wagner, L.; Wallner, M.; Larour, P.; Steineder, K.; Schneider, R. Reduction of Young’s modulus for a wide range of steel sheet materials and its effect during springback simulation. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1157, p. 012031. [Google Scholar]
- Zheng, X.; Han, L.; Hongwei, H.; Liu, Y.; Li, X.; Wu, X.; Wan, M. Influence of hardening model on draw-bending springback prediction of DP980 dual-phase steel. Mater. Proc. 2024, 44, 580–588. [Google Scholar]
- Matukhno, N.; Kljestan, N.; Vogel, S.C.; Knezevic, M. Cyclic bending under tension of alloy AZ31 sheets: Influence on elongation-to-fracture and strength. Mater. Sci. Eng. A 2022, 857, 144127. [Google Scholar] [CrossRef]
- Ha, J.; Piccininni, A.; Korkolis, Y.P.; Palumbo, G.; Knezevic, M.; Kinsey, B.L. Formability Improvements of AA5754-H32 at Room Temperature via Continuous Bending Under Tension (CBT) and Pre-forming Heat Treatment. In Forming the Future; The Minerals, Metals & Materials Series; Daehn, G., Cao, J., Kinsey, B., Tekkaya, E., Vivek, A., Yoshida, Y., Eds.; Springer: Cham, Switzerland, 2021; pp. 1805–1812. [Google Scholar]
- Mayer, S.; Matukhno, N.; Kinsey, B.L.; Knezevic, M.; Ha, J. Manipulation of strength and ductility of AA5182-O through cyclic bending under tension and annealing processing. J. Manuf. Process. 2024, 124, 673–688. [Google Scholar] [CrossRef]
- Tamimi, S.; Sivaswamy, G.; Pirgazi, H.; Amirkhiz, B.S.; Moturu, S.; Siddiq, M.A.; Kockelmann, W.; Blackwell, P. A new route for developing ultrafine-grained Al alloy strips using repetitive bending under tension. Mater. Des. 2021, 206, 109750. [Google Scholar] [CrossRef]
- Folle, L.; Schaeffer, L. New proposal to calculate the friction in sheet metal forming through bending under tension test. Mater. Res. 2019, 22, e20190523. [Google Scholar] [CrossRef]
- Nielsen, C.V.; Legarth, B.N.; Niordson, C.F.; Bay, N. A correction to the analysis of bending under tension tests. Tribol. Int. 2022, 173, 107625. [Google Scholar] [CrossRef]
- Kim, Y.S.; Jain, M.K.; Metzger, D.R. Determination of pressure-dependent friction coefficient from draw-bend test and its application to cup drawing. Int. J. Mach. Tools Manuf. 2012, 56, 69–78. [Google Scholar] [CrossRef]
- Trzepiecinski, T.; Lemu, H.G. Effect of Lubrication on Friction in Bending under Tension Test-Experimental and Numerical Approach. Metals 2020, 10, 544. [Google Scholar] [CrossRef]
- Lemu, H.G.; Trzepieciński, T. Numerical and Experimental Study of Frictional Behavior in Bending Under Tension Test. Stroj. Vestn.—J. Mech. Eng. 2013, 59, 41–49. [Google Scholar] [CrossRef]
- Pereira, M.P.; Yan, W.; Rolfe, B.F. Contact pressure evolution and its relation to wear in sheet metal forming. Wear 2008, 265, 1687–1699. [Google Scholar] [CrossRef]
- Ceron, E.; Bay, N. Determination of friction in sheet metal forming by means of simulative tribo-tests. Key Eng. Mater. 2013, 549, 415–422. [Google Scholar] [CrossRef]
- EN ISO 6892-1:2020; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 25178-2:2012; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2012.
- Romanowski, W.P. Cold Sheet Metal Forming; WNT: Warszawa, Poland, 1990. [Google Scholar]
- Fujifilm Prescale. Available online: https://fujiprescalefilm.com/ (accessed on 31 August 2025).
- Duncan, J.L.; Shabel, B.S.; Filho, J.G. A Tensile Strip Test for Evaluating Friction in Sheet Metal Forming; SAE Technical Paper, 780391; SAE International: Warrendale, PA, USA, 1978. [Google Scholar]
- Fox, R.T.; Maniatty, A.M.; Lee, D. Determination of friction coefficient for sheet materials under stretch-forming conditions. Metall. Trans. A 1989, 20, 2179–2182. [Google Scholar]
- Han, S.S. Influence of tool geometry on friction behavior in sheet metal forming. J. Mater. Process. Technol. 1997, 63, 129–133. [Google Scholar] [CrossRef]
- Cao, S.Q.; Zhang, J.X.; Wu, J.S.; Chen, J.G. Effect of local texture on the orange peel defect in St14 steel sheet. In Materials Science Forum; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2015; pp. 167–172. [Google Scholar]
- Schäfer, R. Kontaktgebundene Oberflächenwandlung Polykristalliner Blechoberflächen; Shaker: Aachen, Germany, 2008. [Google Scholar]
- Krbata, M.; Ciger, R.; Kohutiar, M.; Sozańska, M.; Eckert, M.; Barenyi, I.; Kianicova, M.; Jus, M.; Beronská, N.; Mendala, B.; et al. Effect of Supercritical Bending on the Mechanical & Tribological Properties of Inconel 625 Welded Using the Cold Metal Transfer Method on a 16Mo3 Steel Pipe. Materials 2023, 16, 5014. [Google Scholar] [CrossRef]
- Filzek, J.; Keil, D.; Schröder, H. Temperature Induced Friction Increase in Friction Test and Forming Demonstrator for Sheet Metal Forming. ESAFORM 2021 [Online], Online Since 08 April 2021. Available online: https://popups.uliege.be/esaform21/index.php?id=3732 (accessed on 17 September 2025).
- de Oliveira Lopes, A.P.; de Almeida, D.T.; Johnson, S.M.; D’Oliveira, A.S.C.M.; Costa, H.L.; Scheuer, C.J. Influence of sliding speed and contact pressure on the tribological performance of cold working tool steels in strip drawing tests. Wear 2025, 571, 205766. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Q.; Zheng, Y.; Liu, X.; Politis, D.; El Fakir, O.; Wang, L. Investigation of the friction coefficient evolution and lubricant breakdown behaviour of AA7075 aluminium alloy forming processes at elevated temperatures. Int. J. Extrem. Manuf. 2021, 3, 025002. [Google Scholar] [CrossRef]
- Sedlaček, M.; Vilhena, L.M.S.; Podgornik, B.; Vižintin, J. Surface topography modelling for reduced friction. Stroj. Vestn.-J. Mech. Eng. 2011, 57, 674–680. [Google Scholar] [CrossRef]
- Hu, Z.M.; Dean, T.A. A study of surface topography, friction and lubricants in metalforming. Int. J. Mach. Tools Manuf. 2000, 40, 1637–1649. [Google Scholar] [CrossRef]
- Tayebi, N.; Polycarpou, A.A. Modeling the effect of skewness and kurtosis on the static friction coefficient of rough surfaces. Tribol. Int. 2004, 37, 491–505. [Google Scholar] [CrossRef]
- Dai, Y.Z.; Chiang, F.P. On the mechanism of plastic deformation induced surface roughness. J. Eng. Mater. Technol. 1992, 114, 432–438. [Google Scholar] [CrossRef]
- Guangnan, C.; Huan, S.; Shiguang, H.; Baudelet, B. Roughening of the free surfaces of metallic sheets during stretch forming. Mater. Sci. Eng. A 1990, 128, 33–38. [Google Scholar] [CrossRef]
- Shimizu, I.; Okuda, T.; Abe, T.; Tani, H. Surface roughening and deformation of grains during uniaxial tension of polycrystalline iron. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 2001, 44, 499–506. [Google Scholar] [CrossRef]
- Baydogan, M.; Akoy, M.A.; Kayali, E.S.; Cimenoglu, H. Deformation induced surface roughening of austenitic stainless steels. ISIJ Int. 2003, 43, 1795–1798. [Google Scholar] [CrossRef]
- Love, J.C.; Smith, G.F.; Pharaoh, M.; Coates, R. Orange peel: Who cares? Proc. Inst. Mech. Engineers. Part D J. Automob. Eng. 2001, 215, 1241–1244. [Google Scholar] [CrossRef]
- Kuczek, Ł.; Żaba, K.; Trzepieciński, T.; Balcerzak, M.; Novák, V. Characterization of Hexagonal Close-Packed Zn-Cu-Ti Alloy Pyramid Drawpieces in Single-Point Incremental Sheet Forming Process. Materials 2025, 18, 3078. [Google Scholar] [CrossRef]
- Kuczek, Ł.; Żaba, K.; Trzepieciński, T.; Wąsikowski, M.; Balcerzak, M.; Sitek, R. Influence of Heat Treatment on Properties and Microstructure of EN AW-6082 Aluminium Alloy Drawpieces After Single-Point Incremental Sheet Forming. Appl. Sci. 2025, 15, 783. [Google Scholar] [CrossRef]
- Coubrough, G.J.; Allinger, M.J.; Van Tyne, C.J. Angle of contact between sheet and die during stretch-bend deformation as determined on the bending-under-tension friction test system. J. Mater. Process. Technol. 2002, 130–131, 69–75. [Google Scholar] [CrossRef]
- Başpınar, M.; Akkök, M. Modeling and Simulation of Friction in Deep Drawing. J. Tribol. 2016, 138, 021104. [Google Scholar] [CrossRef]
Sa, μm | Sq, μm | Sv, μm | Sp, μm | Sz, μm | Sku, – | Ssk, – |
---|---|---|---|---|---|---|
1.05 | 1.45 | 10.6 | 3.98 | 14.6 | 8.25 | −1.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trzepieciński, T.; Szwajka, K.; Luiz, V.D.; Zielińska-Szwajka, J.; Szewczyk, M. Comparison of Approaches to Determining the Coefficient of Friction in Stretch-Forming Conditions. Materials 2025, 18, 4534. https://doi.org/10.3390/ma18194534
Trzepieciński T, Szwajka K, Luiz VD, Zielińska-Szwajka J, Szewczyk M. Comparison of Approaches to Determining the Coefficient of Friction in Stretch-Forming Conditions. Materials. 2025; 18(19):4534. https://doi.org/10.3390/ma18194534
Chicago/Turabian StyleTrzepieciński, Tomasz, Krzysztof Szwajka, Valmir Dias Luiz, Joanna Zielińska-Szwajka, and Marek Szewczyk. 2025. "Comparison of Approaches to Determining the Coefficient of Friction in Stretch-Forming Conditions" Materials 18, no. 19: 4534. https://doi.org/10.3390/ma18194534
APA StyleTrzepieciński, T., Szwajka, K., Luiz, V. D., Zielińska-Szwajka, J., & Szewczyk, M. (2025). Comparison of Approaches to Determining the Coefficient of Friction in Stretch-Forming Conditions. Materials, 18(19), 4534. https://doi.org/10.3390/ma18194534