Multi-Objective Optimization of Tool Edge Geometry for Enhanced Cutting Performance in Turning Ti6Al4V
Abstract
1. Introduction
2. Classification and Cutting Performance Analysis of Micro-Groove Structures
2.1. Geometric Modeling of Micro-Groove Structures
2.2. Finite Element Model Construction
2.2.1. Metal Material Properties
2.2.2. Friction Model
2.2.3. Machining Finite Element Model
2.3. Simulation-Based Cutting Performance Analysis of Tool Groove Geometries
3. Iterative Multi-Objective Optimization Framework for Tool Structural Design
3.1. Development of an Integrated Thermomechanical Simulation Platform
3.1.1. Parametric Modeling of Tool Geometries
3.1.2. Multi-Objective Optimization Criteria
3.1.3. Optimization Outcomes
4. Performance Simulation and Manufacturing of Optimized Micro-Groove Tools
4.1. Cutting Performance Evaluation
4.2. Structural Integrity Verification
4.3. Tool Solid Preparation
5. Experimental Investigation of Optimized Tool Cutting Performance
5.1. Cutting Force Benchmarking
5.2. Chip Morphology Characterization
5.3. Tool Life Assessment and Wear Mechanism Characterization
5.4. Machined Surface Roughness Comparative Evaluation
6. Conclusions
- (1)
- Under identical cutting parameters, the arc-type micro-groove structure improves cutting temperature distribution, reduces cutting forces, achieves smoother temperature variations, and significantly lowers the maximum tooltip temperature compared to other groove types, while demonstrating superior chip-breaking efficiency.
- (2)
- With “minimum cutting force, minimum cutting temperature, and minimum tool wear rate” as optimization objectives, the transition segment length , micro-groove width , and micro-groove depth were selected as structural parameters. The NSGA-II intelligent algorithm was employed to compute the optimal Pareto solution set, yielding the best micro-groove parameters: = 0.13 mm, = 1.78 mm, = 0.45 mm.
- (3)
- Under identical simulation conditions, the optimized tool outperforms the original design, achieving a 19.3% reduction in cutting force, 14.2% decrease in temperature, and 20.1% lower wear rate per unit time, while concurrently minimizing the chip curl radius by 11.4%. These metrics validate the micro-groove geometry’s efficacy in balancing thermomechanical loads and enhancing machining efficiency.
- (4)
- Turning experiments revealed that the optimized tool generates lower three-directional cutting forces compared to the original tool, with the largest average reduction in principal cutting force (approximately 12.6%). The optimized tool also exhibits significantly higher chip fracture frequency and smaller chip curl radii than the original tool, demonstrating superior chip-breaking performance.
- (5)
- The optimized tool exhibits smaller adhered deposits on both rake and flank faces, with smoother flank wear morphology. When reaching the same wear threshold, the optimized tool achieves approximately 33.3% longer service life compared to the original tool. Elemental spectroscopy analysis confirms reduced oxidative wear in the optimized tool.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TANH | Hyperbolic tangent |
NSGA-II | Non-dominated sorting genetic algorithm II |
FEM | Finite element method |
2D | Two-dimensional |
3D | Three-dimensional |
J-C | Johnson–Cook |
CPE3T | Continuum plane element, 3-node, thermal coupling |
CPE4RT | Continuum plane element, 4-node, reduced integration, thermal coupling |
PVD | Physical vapor deposition |
CNC | Computerized numerical control |
Co | Cobalt |
SEM | Scanning electron microscope |
N | Nitrogen |
O | Oxygen |
EDS | Energy-dispersive spectroscopy |
References
- Bergmann, B.; Denkena, B.; Grove, T.; Picker, T. Chip formation of rounded cutting edges. Int. J. Precis. Eng. Manuf. 2019, 20, 37–44. [Google Scholar] [CrossRef]
- Niu, J.; Huang, C.; Shi, Z.; Liu, H.; Tang, Z.; Su, R.; Chen, Z.; Li, B.; Wang, Z.; Xu, L. A chip formation mechanism taking into account microstructure evolution during the cutting process: Taking compacted graphite iron machining as an example. Int. J. Mach. Tools Manuf. 2024, 198, 104150. [Google Scholar] [CrossRef]
- Denkena, B.; Köhler, J.; Mengesha, M.S. Influence of the cutting edge rounding on the chip formation process: Part 1. Investigation of material flow, process forces, and cutting temperature. Prod. Eng. 2012, 6, 329–338. [Google Scholar] [CrossRef]
- Zhuang, K.; Fu, C.; Weng, J.; Hu, C. Cutting edge microgeometries in metal cutting: A review. Int. J. Adv. Manuf. Technol. 2021, 116, 2045–2092. [Google Scholar] [CrossRef]
- Mishra, S.K.; Ghosh, S.; Aravindan, S. 3D finite element investigations on textured tools with different geometrical shapes for dry machining of titanium alloys. Int. J. Mech. Sci. 2018, 141, 424–449. [Google Scholar] [CrossRef]
- Ranjan, P.; Hiremath, S.S. Role of textured tool in improving machining performance: A review. J. Manuf. Process. 2019, 43, 47–73. [Google Scholar] [CrossRef]
- Mishra, S.K.; Ghosh, S.; Aravindan, S. Machining performance evaluation of Ti6Al4V alloy with laser textured tools under MQL and nano-MQL environments. J. Manuf. Process. 2020, 53, 174–189. [Google Scholar] [CrossRef]
- Deng, B.; He, Q.; DePaiva, J.M.; Veldhuis, S.C. A novel approach to cutting tool edge design based on initial wear stage. J. Mater. Process. Technol. 2022, 304, 117561. [Google Scholar] [CrossRef]
- Cascón, I.; Sarasua, J.A.; Elkaseer, A. Tailored chip breaker development for polycrystalline diamond inserts: FEM-based design and validation. Appl. Sci. 2019, 9, 4117. [Google Scholar] [CrossRef]
- Zou, Z.; He, L.; Jiang, H.; Zhan, G.; Wu, J. Development and analysis of a low-wear micro-groove tool for turning Inconel 718. Wear 2019, 420, 163–175. [Google Scholar] [CrossRef]
- Osorio-Pinzon, J.C.; Abolghasem, S.; Maranon, A.; Casas-Rodriguez, J.P. Cutting parameter optimization of Al-6063-O using numerical simulations and particle swarm optimization. Int. J. Adv. Manuf. Technol. 2020, 111, 2507–2532. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, D.W.; Jiang, G.J. Optimization of Machining Parameters in blisk processing based on tool reliability. In Proceedings of the 10th International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE 2020), Shaanxi, China, 8–11 October 2020; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1043, p. 032006. [Google Scholar] [CrossRef]
- Chen, N.; Li, H.N.; Wu, J.; Li, Z.; Li, L.; Liu, G.; He, N. Advances in micro milling: From tool fabrication to process outcomes. Int. J. Mach. Tools Manuf. 2021, 160, 103670. [Google Scholar] [CrossRef]
- Yue, D.; Zhang, A.; Yue, C.; Liu, X.; Li, M.; Hu, D. Optimization method of tool parameters and cutting parameters considering dynamic change of performance indicators. Materials 2021, 14, 6181. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Liu, K.; Jiang, S.; Zhao, D.; Wang, S.; Yang, Y. Experiment and numerical study of chip formation mechanism during cryogenic machining of Ti-6Al-4V alloy. J. Manuf. Process. 2022, 84, 1246–1257. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Wang, B.; Hou, X. Modeling of plastic deformation induced by thermo-mechanical stresses considering tool flank wear in high-speed machining Ti-6Al-4V. Int. J. Mech. Sci. 2018, 140, 1–12. [Google Scholar] [CrossRef]
- Calamaz, M.; Coupard, D.; Girot, F. A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 2008, 48, 275–288. [Google Scholar] [CrossRef]
- Ducobu, F.; Rivière-Lorphèvre, E.; Filippi, E. Numerical contribution to the comprehension of saw-toothed Ti6Al4V chip formation in orthogonal cutting. Int. J. Mech. Sci. 2014, 81, 77–87. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Hancock, J.W.; Mackenzie, A.C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J. Mech. Phys. Solids 1976, 24, 147–160. [Google Scholar] [CrossRef]
- Dey, S.; Børvik, T.; Hopperstad, O.S.; Langseth, M. On the influence of constitutive relation in projectile impact of steel plates. Int. J. Impact Eng. 2007, 34, 464–486. [Google Scholar] [CrossRef]
- Lesuer, D.R. Experimental Investigations of Material Models for Ti-6Al-4V Titanium and 2024-T3 Aluminum. 2000. Available online: https://digital.library.unt.edu/ark:/67531/metadc623770/m2/1/high_res_d/11977.pdf (accessed on 15 July 2025).
- Puls, H.; Klocke, F.; Lung, D. Experimental investigation on friction under metal cutting conditions. Wear 2014, 310, 63–71. [Google Scholar] [CrossRef]
- Li, X.; Shi, Z.; Duan, N.; Cui, P.; Zhang, S.; Zhang, X. Cutting performance investigation based on the variable friction model by considering sliding velocity and limiting stress. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234, 1113–1123. [Google Scholar] [CrossRef]
- Zou, Z.; Zhang, T.; He, L.; Zhao, X.; Zhou, T. Hybrid modeling prediction of residual stresses in turned Ti6Al4V considering frictional contact. J. Mater. Res. Technol. 2024, 30, 4377–4392. [Google Scholar] [CrossRef]
- Zou, Z.; He, L.; Zhang, T.; Zhou, T.; Tian, P. Research on serrated chip morphology for turning Ti6Al4V titanium alloy by considering damage evolution. J. Manuf. Process. 2024, 118, 283–301. [Google Scholar] [CrossRef]
- Schulz, H.; Abele, E.; Sahm, A. Material aspects of chip formation in HSC machining. CIRP Ann. 2001, 50, 45–48. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Wang, B. Dynamic recrystallization characterization in Ti-6Al-4V machined surface layer with process-microstructure-property correlations. Appl. Surf. Sci. 2020, 530, 147184. [Google Scholar] [CrossRef]
Al | V | Fe | N + O | Ti |
---|---|---|---|---|
4.83–6.85 | 2.31–4.2 | 0.17 | 0.19 (max.) | Balance |
Density (kg/m3) | Young’s Modulus (GPa) | Poisson’s Ratio | Thermal Conductivity (W/m/K) | Specific Heat (J/kg/K) | Melting Point (°C) |
---|---|---|---|---|---|
4500 | 112 | 0.34 | 7.6 | 611 | 1650 |
(MPa) | (MPa) | (K) | (K) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
968 | 380 | 0.0197 | 0.421 | 0.577 | 1.6 | 0.4 | 6 | 1 | 298 | 1878 |
−0.09 | 0.25 | −0.5 | 0.014 | 3.87 |
Variables | |||
---|---|---|---|
Corridor | [0.05, 0.17] | [1.5, 2.0] | [0.2, 0.5] |
Case | (mm) | (mm) | (mm) | (N) | (℃) | (mm/min) |
---|---|---|---|---|---|---|
1 | 0.11 | 1.65 | 0.39 | 346.3 | 442 | 0.013 |
2 | 0.16 | 1.93 | 0.43 | 352.5 | 434 | 0.014 |
3 | 0.12 | 1.70 | 0.47 | 367.6 | 425 | 0.015 |
4 | 0.13 | 1.78 | 0.45 | 364.4 | 423.2 | 0.013 |
5 | 0.15 | 1.84 | 0.43 | 361.7 | 432 | 0.014 |
6 | 0.12 | 1.69 | 0.42 | 371.9 | 435.7 | 0.013 |
Case | Cutting Speed (m/min) | Feed Rate (mm/rev) | Cutting Width (mm) |
---|---|---|---|
1 | 60 | 0.05 | 1.0 |
2 | 60 | 0.10 | 1.5 |
3 | 60 | 0.15 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Z.; Zhang, T.; He, L. Multi-Objective Optimization of Tool Edge Geometry for Enhanced Cutting Performance in Turning Ti6Al4V. Materials 2025, 18, 4160. https://doi.org/10.3390/ma18174160
Zou Z, Zhang T, He L. Multi-Objective Optimization of Tool Edge Geometry for Enhanced Cutting Performance in Turning Ti6Al4V. Materials. 2025; 18(17):4160. https://doi.org/10.3390/ma18174160
Chicago/Turabian StyleZou, Zichuan, Ting Zhang, and Lin He. 2025. "Multi-Objective Optimization of Tool Edge Geometry for Enhanced Cutting Performance in Turning Ti6Al4V" Materials 18, no. 17: 4160. https://doi.org/10.3390/ma18174160
APA StyleZou, Z., Zhang, T., & He, L. (2025). Multi-Objective Optimization of Tool Edge Geometry for Enhanced Cutting Performance in Turning Ti6Al4V. Materials, 18(17), 4160. https://doi.org/10.3390/ma18174160