Modelling Structural Material Damage Using the Cohesive Zone Approach Under Operational Conditions
Abstract
1. Introduction
2. State of the Art and Literature Overview
3. Physical and Mathematical Preliminaries
4. A Model Problem
- (i)
- Removal of the linearised strain assumption, characterised by (1), can be handled using a geometry update like that described in [76] or by applying the ALE formulation in a similar way to that reported in [54]. However, such an approach may not guarantee the preservation of all assumptions on compounded from subdomains with non-Lipschitzian boundaries; for such domains, only much weaker results are available in the advanced functional analysis, cf. [77,78].
- (ii)
- The proper physical analysis, following [14], avoiding (semi-)empiric relations, should expresses the specific Gibbs energy as a function of four state variables, namely temperature, stress, damage, and a set of internal parameters corresponding to four dissipative variables involved in a dissipative potential whose partial differentiation works with the theory of subdifferentials.
- (iii)
- Special physical considerations are needed in the case of fast contacts/impacts of deformable bodies, with accent on the detailed analysis of dissipative energy during such process, cf. [79]. In the case of contacts of multiple bodies [80], non-trivial results and algorithms from graph theory for the effective search for contact candidates cannot be avoided.
- (iv)
- Moreover, the finite strain approach switches such considerations to the (still more complicated) theory of structured deformation (see [81], Chapters 8 and 9, and [82]). Thus, up to now, all computational approaches have been subject to certain compromises between the complexity of physical and mathematical formulations and the need for inexpensive, effective, and robust computational tools.
5. Computational Issues
6. Illustrative Examples
7. Results and Discussion
8. Conclusions
- The suitability of the modified finite element method for two different types of materials was demonstrated. Several types of smeared models were tested as part of the modifications of this method.
- New trends in the modification of the classical finite element method with more sensitive modelling of the influence of the microstructure were indicated and commented on.
- A brief analysis of new procedures based on recommendations and standards in recent years for determining the traction–separation law was performed. The presented examples based on original calculations and experiments prefer loading in mode I.
- In the theoretical part, a mathematical analysis of the modified finite element method for static, quasi-static, and viscous deformation of loaded bodies was performed.
- In the case of austenitic steel, of course, several mesh variants were tested. The more significant influence was the setting of the critical value of the integral. The results obtained using the XFEM and cohesive elements were similar. The task is much more sensitive to the choice of the criterion governing crack formation.
- The cement composite used for the presented results was a model material, and the onset of the bridging effect was estimated using data typical for a class of similar materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Griffith, A.A. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A 1921, 221, 163–198. [Google Scholar]
- Barenblatt, G.I. The mathematical theory of equilibrium of cracks in brittle fracture. Adv. Appl. Mech. 1962, 7, 55–129. [Google Scholar]
- Turon, A.; Camanho, P.P.; Costa, J.; Davila, C.G. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 2006, 38, 1072–1089. [Google Scholar] [CrossRef]
- Xu, X.P.; Needleman, A. Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 1994, 42, 1397–1434. [Google Scholar] [CrossRef]
- Belytschko, T.; Black, T. Elastic crack growth in finite elements with minimal remeshing. Int. J. Num. Methods Eng. 1999, 45, 601–620. [Google Scholar] [CrossRef]
- Moës, N.; Dolbow, J.; Belytschko, T. A finite element method for crack growth without remeshing. Int. J. Num. Methods Eng. 1999, 46, 131–150. [Google Scholar] [CrossRef]
- Simone, A. Partition of unity-based discontinuous finite elements: GFEM, PUFEM, XFEM. Rev. Eur. GÉnie Civ. 2007, 11, 1045–1068. [Google Scholar] [CrossRef]
- Cervera, M.; Barbat, G.B.; Chiumenti, M.; Wu, J.-Y. A comparative review of XFEM, mixed FEM and phase-field models for quasi-brittle cracking. Arch. Comput. Methods Eng. 2022, 29, 1009–1083. [Google Scholar] [CrossRef]
- Kozák, V.; Chlup, Z.; Padělek, P.; Dlouhý, I. Prediction of traction separation law of ceramics using iterative finite element method. Solid State Phenom. 2017, 258, 186–189. [Google Scholar] [CrossRef]
- Kozák, V.; Vala, J. Use of cohesive approaches for modelling critical states in fibre-reinforced structural materials. Materials 2024, 17, 3177. [Google Scholar] [CrossRef]
- Khalilpour, S.; BaniAsad, E.; Dehestani, M. A review on concrete fracture energy and effective parameters. Cem. Concr. Res. 2019, 120, 294–321. [Google Scholar] [CrossRef]
- Naghdinasab, M.; Farrokhabadi, A.; Madadi, H. A numerical method to evaluate the material properties degradation in composite RVEs due to fiber-matrix debonding and induced matrix cracking. Finite Elem. Anal. Des. 2018, 146, 84–95. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Li, Y.-N. Cohesive crack model with rate-dependent opening and viscoelasticity: I. Mathematical model and scaling. Int. J. Fract. 1997, 86, 247–265. [Google Scholar] [CrossRef]
- Vilppo, J.; Kouhia, R.; Hartikainen, J.; Kolari, K.; Fedoroff, A.; Calonius, K. Anisotropic damage model for concrete and other quasi-brittle materials. Int. J. Solids Struct. 2021, 225, 111048. [Google Scholar] [CrossRef]
- Mazars, J. A description of micro- and macroscale damage of concrete structures. Eng. Fract. Mech. 1986, 25, 729–737. [Google Scholar] [CrossRef]
- Mazars, J.; Hamon, F.; Grange, S. A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings. Mater. Struct. 2015, 48, 3779–3793. [Google Scholar] [CrossRef]
- Arruda, M.R.T.; Pacheco, J.; Castro, L.M.S.; Julio, E. A modified Mazars damage model with energy regularization. Theor. Appl. Fract. Mech. 2022, 259, 108129. [Google Scholar] [CrossRef]
- Sun, C.T.; Jin, Z.H. A comparison of cohesive zone modelling and classical fracture mechanics based on near tip stress field. Int. J. Solids Struct. 2006, 43, 1047–1060. [Google Scholar] [CrossRef]
- Wciślik, W.; Pała, T. Selected aspects of cohesive zone modeling in fracture mechanics. Metals 2021, 11, 302. [Google Scholar] [CrossRef]
- Gurson, A.L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 1977, 99, 2–15. [Google Scholar] [CrossRef]
- Brocks, W.; Klingbeil, D.; Künecke, G.; Sun, D.-Z. Application of the Gurson model to ductile tearing resistance. In Constraint Effects in Fracture: Theory and Applications; Kirk, M., Bakker, A., Eds.; ASTM: Dallas, TX, USA, 1995; pp. 232–252. [Google Scholar]
- Kachanov, L.M. Time of the rupture process under creep conditions. Izv. Akad. Nauk. SSSR Otd. Tekhnicheskikh Nauk. 1958, 8, 26–31. [Google Scholar]
- Lemaitre, J.; Bennalal, A.; Marquis, D. Lifetime prediction of structures in anisothermal viscoplasticity coupled to damage. Nucl. Eng. Des. 1992, 133, 345–360. [Google Scholar] [CrossRef]
- Hillerborg, A.; Modéer, M.; Petersson, P.E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 1976, 6, 773–782. [Google Scholar] [CrossRef]
- Airoldi, A.; Davila, C.G. Identification of material parameters for modelling delamination in the presence of fibre bridging. Comp. Struct. 2012, 94, 3240–3249. [Google Scholar] [CrossRef]
- Li, X.; Chen, J. An extensive cohesive damage model for simulation arbitrary damage propagation in engineering materials. Comput. Methods Appl. Mech. Eng. 2017, 315, 744–759. [Google Scholar] [CrossRef]
- ASTM D5528/D5528M-21; Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D7905/D7905M-19e1; Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, PA, USA, 2019.
- Kim, H.; Howe, R.; Wiebe, R.; Spottswood, S.M. Experimental characterization of cohesive law for mode-II interlaminar fracture in geometrical scaled composites using through-thickness deformation analysis. Eng. Fract. Mech. 2025, 326, 111361. [Google Scholar] [CrossRef]
- Kolednik, O.; Schöngrundner, F.; Fischer, D. A new view on J-integrals in elastic-plastic materials. Int. J. Fract. 2014, 187, 77–107. [Google Scholar] [CrossRef]
- Okada, H.; Gouda, T.; Arai, K. Redefined three-dimensional J-integral as finite strain elastic-plastic crack parameter (Energy release rate and contribution of weakly singular terms). Theor. Appl. Fract. Mech. 2024, 130, 104310. [Google Scholar] [CrossRef]
- Goutianos, S. Derivation of path independent coupled mix mode cohesive laws from fracture resistance curves. Appl. Comp. Mater. 2017, 24, 983–997. [Google Scholar] [CrossRef]
- Abadel, A.; Abbas, H.; Alrshoudi, F.; Altheeb, A.; Albidah, A.; Almusallam, T. Experimental and analytical investigation of fiber alignment on fracture properties of concrete. Structures 2020, 28, 2572–2581. [Google Scholar] [CrossRef]
- Scheel, J.; Schlosser, A.; Ricoeur, A. The J-integral for mixed-mode loaded cracks with cohesive zones. Int. J. Fract. 2021, 227, 79–94. [Google Scholar] [CrossRef]
- Taira, S.; Ohtani, R.; Kitamura, T. Application of J-integral to high-temperature crack propagation: Part I—Creep crack propagation. J. Eng. Mater. Technol. 1979, 101, 154–161. [Google Scholar] [CrossRef]
- Brust, F.W.; Atluri, S.N. Studies on creep crack growth using the T˙*-integral. Eng. Fract. Mech. 1986, 23, 551–574. [Google Scholar] [CrossRef]
- Kolednik, O.; Tiwari, A.; Posch, C.; Kegl, M. Configurational force based analysis of creep crack growth. Int. J. Fract. 2022, 236, 175–199. [Google Scholar] [CrossRef]
- Khoei, A.R. Extended Finite Element Method: Theory and Applications; J. Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Hansbo, A.; Hansbo, P. A finite element method for simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 2006, 193, 3523–3540. [Google Scholar] [CrossRef]
- Shen, Y.; Lew, A. Stability and convergence proofs for a discontinuous Galerkin-based extended finite element method for fracture mechanics. Comput. Methods Appl. Mech. Eng. 2010, 199, 2360–2382. [Google Scholar] [CrossRef]
- Moës, N.; Belytschko, T. Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 2002, 69, 813–833. [Google Scholar] [CrossRef]
- Liu, G.; Guo, J.; Bao, Y. Convergence investigation of XFEM enrichment schemes for modeling cohesive cracks. Mathematics 2022, 10, 383. [Google Scholar] [CrossRef]
- Areias, P.M.A.; Belytschko, T. Two-scale shear band evolution by local partition of unity. Int. J. Numer. Methods Eng. 2006, 66, 878–910. [Google Scholar] [CrossRef]
- Aliabadi, M.H.; Saleh, A.L. Fracture mechanics analysis of cracking in plain and reinforced concrete using the boundary element method. Eng. Fract. Mech. 2002, 69, 267–280. [Google Scholar] [CrossRef]
- Belytschko, T.; Gracie, R.; Ventura, G. A review of extended/generalized finite element methods for material modelling. Model. Simul. Mater. Sci. Eng. 2009, 17, 043001. [Google Scholar] [CrossRef]
- Yu, T.T.; Gong, Z.W. Numerical simulation of temperature field in heterogeneous material with the XFEM. Arch. Civ. Mech. Eng. 2013, 13, 199–208. [Google Scholar] [CrossRef]
- Eringen, C.A. Nonlocal Continuum Field Theories; Springer: New York, NY, USA, 2002. [Google Scholar]
- Park, K.; Paulino, G.H.; Roesler, J.R. Cohesive fracture model for functionally graded fibre reinforced concrete. Cem. Concr. Res. 2010, 40, 956–965. [Google Scholar] [CrossRef]
- Ye, C.; Shi, J.; Cheng, G.J. An extended finite element method (XFEM) study on the effect of reinforcing particles on the crack propagation behaviour in a metal-matrix composite. Int. J. Fatigue 2012, 44, 151–156. [Google Scholar] [CrossRef]
- Fries, T.P.; Belytschko, T. The intrinsic XFEM: A method for arbitrary discontinuities without additional unknowns. Int. J. Numer. Methods Eng. 2006, 68, 1358–1385. [Google Scholar] [CrossRef]
- Fries, T.P.; Belytschko, T. The extended/generalized finite element method: An overview of the method and its applications. Int. J. Numer. Methods Eng. 2010, 84, 253–304. [Google Scholar] [CrossRef]
- Tian, R.; Wen, L.-F. Improved XFEM—An extra-dof free, well-conditioning, and interpolating XFEM. Comp. Methods Appl. Mech. Eng. 2015, 285, 639–658. [Google Scholar] [CrossRef]
- Wang, L.-X.; Wen, L.-F.; Tian, R.; Feng, C. Improved XFEM (IXFEM): Arbitrary multiple crack initiation, propagation and interaction analysis. Comp. Methods Appl. Mech. Eng. 2023, 405, 115844. [Google Scholar] [CrossRef]
- De Maio, U.; Gaetano, D.; Greco, F.; Lonetti, P.; Pranno, A. An adaptive cohesive interface model for fracture propagation analysis in heterogeneous media. Eng. Fract. Mech. 2025, 325, 111330. [Google Scholar] [CrossRef]
- Paul, K.; Balu, A.S.; Babu Nayaran, K.S. Fracture mechanics-based meshless method for crack propagation in concrete structures. Structures 2025, 74, 108422. [Google Scholar] [CrossRef]
- Lancaster, P.; Salkauskas, K. Surfaces generated by moving least squares method. Math. Comput. 1981, 37, 141–158. [Google Scholar] [CrossRef]
- Soparat, P.; Nanakorn, P. Analysis of cohesive crack growth by the element-free Galerkin method. J. Mech. 2008, 24, 45. [Google Scholar] [CrossRef]
- Shi, F.; Wang, D.; Yang, Q. An XFEM-based numerical strategy to model three-dimensional fracture propagation regarding crack front segmentation. Theor. Appl. Fract. Mech. 2022, 118, 103250. [Google Scholar] [CrossRef]
- Amato, D.; Yarullin, R.; Shlyannikov, V.; Citare, R. Numerical and experimental investigation of mixed-mode crack growth in aluminum alloys. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 2854–2872. [Google Scholar] [CrossRef]
- Iarve, E.V.; Zhou, E.; Keith Ballard, M.; Gao, Y.; Adluru, H.K.; Mollenhauer, D. Regularized X-FEM modeling of arbitrary 3D interacting crack networks. Int. J. Numer. Methods Eng. 2025, 126, e7653. [Google Scholar] [CrossRef]
- Papenfuß, C. Continuum Thermodynamics and Constitutive Theory; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Vala, J.; Tomáš, J. Damage behaviour of quasi-brittle composites: Mathematical and computational aspects. Appl. Sci. 2025, 15, 4214. [Google Scholar] [CrossRef]
- Roubíček, T. Nonlinear Partial Differential Equations with Applications; Birkhäuser: Basel, Switzerland, 2005. [Google Scholar]
- Trcala, M.; Suchomelová, P.; Bošanský, M.; Hokeš, F.; Němec, I. The generalized Kelvin chain-based model for an orthotropic viscoelastic material. Mech. Time-Depend. Mater. 2024, 28, 1639–1659. [Google Scholar] [CrossRef]
- Trcala, M.; Suchomelová, P.; Bošanský, M.; Němec, I. A constitutive model considering creep damage of wood. Mech. Time-Depend. Mater. 2024, 28, 163–183. [Google Scholar] [CrossRef]
- Chen, D.-L.; Yang, P.-F.; Lai, Y.-S. A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation. Microelectron. Reliab. 2012, 52, 541–558. [Google Scholar] [CrossRef]
- Drábek, P.; Milota, I. Methods of Nonlinear Analysis; Birkhäuser: Basel, Switzerland, 2013. [Google Scholar]
- Vala, J. Numerical approaches to the modelling of quasi-brittle crack propagation. Arch. Math. 2023, 59, 295–303. [Google Scholar] [CrossRef]
- Vala, J.; Kozák, V. Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites. Theor. Appl. Fract. Mech. 2020, 107, 102486. [Google Scholar] [CrossRef]
- Vala, J.; Kozák, V. Non-local damage modelling of quasi-brittle composites. Appl. Math. 2021, 66, 815–836. [Google Scholar] [CrossRef]
- Al Janaideh, M.; Krejčí, P.; Monteiro, G.A. Memory reduction of rate-dependent Prandtl–Ishlinskiǐ compensators in applications on high-precision motion systems. Phys. B 2024, 677, 415595. [Google Scholar] [CrossRef]
- Kobelev, V. Some basic solutions for nonlinear creep. Int. J. Solids Struct. 2014, 51, 3372–3381. [Google Scholar] [CrossRef]
- Lourenço, P.B.; de Borst, R.; Rots, J. A plane stress softening plasticity model for orthotropic materials. Int. J. Numer. Methods Eng. 1997, 40, 4033–4057. [Google Scholar] [CrossRef]
- van den Heever, M.; Bester, F.; Kruger, J.; van Zijl, G. Numerical modelling strategies for reinforced 3D concrete printed elements. Addit. Manuf. 2022, 50, 102569. [Google Scholar] [CrossRef]
- Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Mentrelli, A. On variable-order fractional linear viscoelasticity. Fract. Calc. Appl. Anal. 2024, 27, 1564–1578. [Google Scholar] [CrossRef]
- Léger, S.; Pepin, A. An updated Lagrangian method with error estimation and adaptive remeshing for very large deformation elasticity problems: The three-dimensional case. Comput. Methods Appl. Mech. Eng. 2016, 309, 1–18. [Google Scholar] [CrossRef]
- Jiang, R.; Kauranen, A. Korn inequality on irregular domains. J. Math. Anal. Appl. 2016, 426, 41–59. [Google Scholar] [CrossRef]
- Cianchi, A.; Maz’ya, V.G. Sobolev inequalities in arbitrary domains. Adv. Math. 2016, 293, 644–696. [Google Scholar] [CrossRef]
- Němec, I.; Vala, J.; Štekbauer, H.; Jedlička, M.; Burkart, D. On a new computational algorithm for impacts of elastic bodies. Appl. Math. 2022, 67, 775–804. [Google Scholar] [CrossRef]
- Vala, J.; Rek, V. On a computational approach to multiple contacts/impacts of elastic bodies. In Proceedings of the 21st Programs and Algorithms of Numerical Mathematics (PANM), Hejnice, Czech Republic, 21–26 June 2020; Institute of Mathematics CAS: Prague, Czech Republic, 2022; pp. 269–280. [Google Scholar]
- Kružík, M.; Roubíček, T. Mathematical Methods in Continuum Mechanics of Solids; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Krömer, S.; Kružík, M.; Morandotti, M.; Zappale, E. Measure-valued structured deformations. J. Nonlinear Sci. 2024, 34, 100. [Google Scholar] [CrossRef]
- Tao, L.; Li, Y.; Wen, H.; Yu, S.; Feng, Z. Analysis of multiple contact types within the framework of semi-finite element method. Appl. Math. Comput. 2025, 502, 129494. [Google Scholar] [CrossRef]
- Dugdale, D.S. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 1960, 8, 100. [Google Scholar] [CrossRef]
- Huang, B.T.; Li, Q.H.; Su, S.L.; Zhang, L. Static and fatigue performance of reinforced concrete beam strengthened with strain-hardening fiber-reinforced cementitious composite. Eng. Struct. 2019, 199, 109576. [Google Scholar] [CrossRef]
- Ghabezi, P.; Farahani, M. A cohesive model with a multi-stage softening behavior to predict fracture in nano composite joints. Eng. Fract. Mech. 2019, 219, 106611. [Google Scholar] [CrossRef]
- Du, L.; Jiao, W.; Bäcke, O.; Colliander, M.H.; Poelma, R.H.; Fan, J.; van Driel, W.D.; Fan, X.; Zhan, G. Interface strength and crack propagation mechanisms in sintered copper nanoparticles. Acta Mater. 2025, 296, 121187. [Google Scholar] [CrossRef]
- de Oliveira, L.A.; Donadon, M.V. Delamination analysis using cohesive zone model: A discussion on traction-separation law and mixed-mode criteria. Eng. Fract. Mech. 2020, 228, 106922. [Google Scholar] [CrossRef]
- Poblete, F.R.; Mondal, K.; Ma, Y.; Dickey, M.D.; Genzer, J.; Zhu, Y. Direct measurement of rate-dependent mode I and mode II traction-separation laws for cohesive zone modeling of laminated glass. Compos. Struc. 2022, 279, 114759. [Google Scholar] [CrossRef]
- Nicaise, S.; Renard, Y.; Chahine, E. Optimal convergence analysis for the extended finite element method. Int. J. Numer. Methods Eng. 2011, 86, 528–548. [Google Scholar] [CrossRef]
- Saxby, B.A.; Hazel, A.L. Improving the modified XFEM for optimal high-order approximation. Int. J. Numer. Methods Eng. 2020, 121, 411–433. [Google Scholar] [CrossRef]
- Wang, D.; Li, H.; Zhang, Q. General enrichments of stable GFEM for interface problems: Theory and extreme learning machine construction. Appl. Numer. Math. 2025, 214, 143–159. [Google Scholar] [CrossRef]
Input Data | Value | |
---|---|---|
E | Young modulus | MPa |
Poisson ratio | ||
Yield strength | 145 MPa | |
Slope of the plastic part of the true stress × true strain curve | 700 MPa | |
B | Creep proportionality constant for power law | |
n | Creep stress sensitivity parameter | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozák, V.; Vala, J.; Derevianko, A. Modelling Structural Material Damage Using the Cohesive Zone Approach Under Operational Conditions. Materials 2025, 18, 4039. https://doi.org/10.3390/ma18174039
Kozák V, Vala J, Derevianko A. Modelling Structural Material Damage Using the Cohesive Zone Approach Under Operational Conditions. Materials. 2025; 18(17):4039. https://doi.org/10.3390/ma18174039
Chicago/Turabian StyleKozák, Vladislav, Jiří Vala, and Anna Derevianko. 2025. "Modelling Structural Material Damage Using the Cohesive Zone Approach Under Operational Conditions" Materials 18, no. 17: 4039. https://doi.org/10.3390/ma18174039
APA StyleKozák, V., Vala, J., & Derevianko, A. (2025). Modelling Structural Material Damage Using the Cohesive Zone Approach Under Operational Conditions. Materials, 18(17), 4039. https://doi.org/10.3390/ma18174039