A DFT Study on the Effect of Biaxial Strain on the Electronic Properties of Graphene Doped with B, N, Al, Si, S, and Ga
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Geometric and Structural Features of Doped Graphene
3.2. Strain-Induced Variation in Fermi Energy in Doped Graphene
3.3. Density of States Analysis of Doped Graphene Under Strain
3.4. Strain Sensitivity and Material Design Considerations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nhiem, L.T.; Oanh, D.T.Y.; Hieu, N.H. Strain/Pressure Sensors Utilizing Advanced Nanomaterials. Vietnam J. Chem. 2024, 62, 13–20. [Google Scholar] [CrossRef]
- Piscitelli, F.; Rollo, G.; Scherillo, F.; Lavorgna, M. Innovative Graphene-PDMS Sensors for Aerospace Applications. Adv. Mater. Lett. 2019, 10, 533–538. [Google Scholar] [CrossRef]
- Scalia, T.; Bonventre, L.; Terranova, M.L. From Protosolar Space to Space Exploration: The Role of Graphene in Space Technology and Economy. Nanomaterials 2023, 13, 680. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wei, Y.; Qiu, Y. Advanced Flexible Skin-Like Pressure and Strain Sensors for Human Health Monitoring. Micromachines 2021, 12, 695. [Google Scholar] [CrossRef]
- Hamed, Y.; O’Donnell, G.; Lishchenko, N.; Munina, I. Strain Sensing Technology to Enable Next-Generation Industry and Smart Machines for the Factories of the Future: A Review. IEEE Sens. J. 2023, 23, 25618–25649. [Google Scholar] [CrossRef]
- Sahu, S.K.; Tamadon, I.; Rosa, B.; Renaud, P.; Menciassi, A. A Spring-Based Inductive Sensor for Soft and Flexible Robots. IEEE Sens. J. 2022, 22, 19931–19940. [Google Scholar] [CrossRef]
- Wang, X.; Yu, J.; Cui, Y.; Li, W. Research Progress of Flexible Wearable Pressure Sensors. Sens. Actuators A Phys. 2021, 330, 112838. [Google Scholar] [CrossRef]
- Singh, A.; Lee, S.; Watanabe, H.; Lee, H. Graphene-Based Ultrasensitive Strain Sensors. ACS Appl. Electron. Mater. 2020, 2, 523–528. [Google Scholar] [CrossRef]
- Cao, G.; Lin, H.; Fraser, S.; Zheng, X.; Del Rosal, B.; Gan, Z.; Wei, S.; Gan, X.; Jia, B. Resilient Graphene Ultrathin Flat Lens in Aerospace, Chemical, and Biological Harsh Environments. ACS Appl. Mater. Interfaces 2019, 11, 20298–20303. [Google Scholar] [CrossRef]
- Ullah, S.; Shi, Q.; Zhou, J.; Yang, X.; Ta, H.Q.; Hasan, M.; Ahmad, N.M.; Fu, L.; Bachmatiuk, A.; Rümmeli, M.H. Advances and Trends in Chemically Doped Graphene. Adv. Mater. Interfaces 2020, 7, 2000999. [Google Scholar] [CrossRef]
- Narayan, J.; Bezborah, K. Recent Advances in the Functionalization, Substitutional Doping and Applications of Graphene/Graphene Composite Nanomaterials. RSC Adv. 2024, 14, 13413–13444. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.; Gupta, A.; Saraf, S.; Zhang, C.; Sakthivel, T.S.; Barkam, S.; Agarwal, A.; Seal, S. Functional NiAl-Graphene Oxide Composite as a Model Coating for Aerospace Component Repair. Carbon 2016, 105, 529–543. [Google Scholar] [CrossRef]
- Kausar, A.; Ahmad, I.; Eisa, M.H.; Maaza, M. Graphene Nanocomposites in Space Sector—Fundamentals and Advancements. C 2023, 9, 29. [Google Scholar] [CrossRef]
- Varghese, S.S.; Swaminathan, S.; Singh, K.K.; Mittal, V. Ab Initio Study on Gas Sensing Properties of Group III (B, Al and Ga) Doped Graphene. Comput. Condens. Matter 2016, 9, 40–55. [Google Scholar] [CrossRef]
- Akhmetsadyk, D.; Ilyin, A.; Guseinov, N.; Beall, G. Adsorption of SO2 Molecule on Pristine, N, Ga-Doped and -Ga-N- Co-Doped Graphene: A DFT Study. Computation 2023, 11, 235. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, C.; Wu, G.; Chen, J.; Li, Y. DFT Study on the Electronic Structure and Optical Properties of N, Al, and N-Al Doped Graphene. Appl. Surf. Sci. 2018, 459, 354–362. [Google Scholar] [CrossRef]
- Rani, P.; Jindal, V.K. Designing Band Gap of Graphene by B and N Dopant Atoms. RSC Adv. 2013, 3, 802–812. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, W.; Zhao, K.; Guan, F.; Wang, Y. Investigations on the Electronic Structure and Optical Properties of (Ga,N,Ga-N) Doped Graphene by First-Principle Calculations. Int. J. Mod. Phys. B 2021, 35, 2150067. [Google Scholar] [CrossRef]
- Rafique, M.; Shuai, Y.; Hussain, N. First-Principles Study on Silicon Atom Doped Monolayer Graphene. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 95, 94–101. [Google Scholar] [CrossRef]
- Bi, D.M.; Qiao, L.; Hu, X.Y.; Liu, S.J. Geometrical and Electronic Structure Investigations of S-Doped Graphene. Adv. Mater. Res. 2013, 669, 144–148. [Google Scholar] [CrossRef]
- Denis, P.A. Chemical Reactivity and Band-Gap Opening of Graphene Doped with Gallium, Germanium, Arsenic, and Selenium Atoms. ChemPhysChem 2014, 15, 3994–4000. [Google Scholar] [CrossRef] [PubMed]
- Riyajuddin, S.; Kumar, S.; Gaur, S.P.; Sud, A.; Maruyama, T.; Ali, M.E.; Ghosh, K. Linear Piezoresistive Strain Sensor Based on Graphene/g-C3N4/PDMS Heterostructure. Nanotechnology 2020, 31, 295501. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Luo, Y.; Wang, C. Effects of SI, N and B Doping on the Mechanical Properties of Graphene Sheets. Acta Mech. Solida Sin. 2015, 28, 618–625. [Google Scholar] [CrossRef]
- Zhou, Y.; He, X.; Li, M. Roles of Doping in Enhancing the Performance of Graphene/Graphene-like Semiconductors. AIP Adv. 2025, 15, 010701. [Google Scholar] [CrossRef]
- Ain, N.U.; Kanwal, A.; Aftab, T.; Jalil, A.; Aamir, M. Structural and Electronic Properties of Graphene-like GeC3 under Mechanical Strain: A DFT Study. New J. Chem. 2025, 49, 4156–4166. [Google Scholar] [CrossRef]
- Almahmoud, E.A.; Talla, J.A.; Abu-Farsakh, H. Influence of Uniaxial Strain on the Electronic Properties of Doped Graphene Mono-Sheets: A Theoretical Study. Mater. Res. Express 2019, 6, 115617. [Google Scholar] [CrossRef]
- Kumar, R.; Goel, N.; Riyaz, M.; Gupta, S. Effect of Boron and Nitrogen Doping on Mechanical and Electronic Properties of Graphane under Uni-Axial Strain Conditions: A DFT Study. Comput. Theor. Chem. 2021, 1200, 113195. [Google Scholar] [CrossRef]
- Pacheco, J.M.; Gueorguiev, G.K.; Martins, J.L. First-Principles Study of the Possibility of Condensed Phases of Endohedral Silicon Cage Clusters. Phys. Rev. B 2002, 66, 033401. [Google Scholar] [CrossRef]
- Filho, M.A.M.; Farmer, W.; Hsiao, C.-L.; Dos Santos, R.B.; Hultman, L.; Birch, J.; Ankit, K.; Gueorguiev, G.K. Density Functional Theory-Fed Phase Field Model for Semiconductor Nanostructures: The Case of Self-Induced Core–Shell InAlN Nanorods. Cryst. Growth Des. 2024, 24, 4717–4727. [Google Scholar] [CrossRef]
- Delley, B. From Molecules to Solids with the DMol3 Approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Bleu, Y.; Bourquard, F.; Barnier, V.; Lefkir, Y.; Reynaud, S.; Loir, A.-S.; Garrelie, F.; Donnet, C. Boron-Doped Graphene Synthesis by Pulsed Laser Co-Deposition of Carbon and Boron. Appl. Surf. Sci. 2020, 513, 145843. [Google Scholar] [CrossRef]
- Ao, Z.M.; Yang, J.; Li, S.; Jiang, Q. Enhancement of CO Detection in Al Doped Graphene. Chem. Phys. Lett. 2008, 461, 276–279. [Google Scholar] [CrossRef]
- Romero, M.T.; Avila Alvarado, Y.; Garcia-Diaz, R.; Garcia, C.R.; Ochoa Valiente, R.; Cocoletzi, G.H. First Principles Calculations of Graphene Doped with Al, P and Si Heteroatoms. Nano Hybrids Compos. 2017, 16, 52–55. [Google Scholar] [CrossRef]
- Qu, Y.; Ding, J.; Fu, H.; Chen, H.; Peng, J. Investigation on Tunable Electronic Properties of Semiconducting Graphene Induced by Boron and Sulfur Doping. Appl. Surf. Sci. 2021, 542, 148763. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Z.; Song, L.; Guo, W.; Gao, W.; Ci, L.; Rao, A.; Quan, W.; Vajtai, R.; Ajayan, P.M. Synthesis of S-Doped Graphene by Liquid Precursor. Nanotechnology 2012, 23, 275605. [Google Scholar] [CrossRef]
- Liang, C.; Wang, Y.; Li, T. Synthesis of Sulfur-Doped p-Type Graphene by Annealing with Hydrogen Sulfide. Carbon 2015, 82, 506–512. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.; Mao, Q.; Zhang, G.; Zhang, W.; Wang, Y.; Yang, W. First-Principle Calculation of Electronic Structure and Optical Properties of (P, Ga, P–Ga) Doped Graphene. Open Phys. 2022, 20, 639–648. [Google Scholar] [CrossRef]
Dopant | C–X Bond Length (Å) | Deviation from C–C (1.42 Å) | Interpretation |
---|---|---|---|
B | 1.47 | +0.05 | Slight elongation compared to pristine C–C bond |
N | 1.41 | −0.01 | Almost unchanged; close to C–C bond length |
Al | 1.72 | +0.30 | Significant elongation due to large atomic radius |
Si | 1.66 | +0.24 | Moderate elongation; size mismatch; and different bonding nature |
S | 1.63 | +0.21 | Similar elongation; electronegativity contrast; and out-of-plane distortion |
Ga | 1.71 | +0.29 | Comparable to Al; induces local lattice expansion |
Strain | B | N | Al | Si | S | Ga |
---|---|---|---|---|---|---|
+0.05 | −5.53 | −4.12 | −5.17 | −4.93 | −4.42 | −5.24 |
+0.04 | −5.49 | −4.51 | −5.14 | −4.87 | −4.35 | −5.19 |
+0.03 | −5.41 | −4.36 | −5.05 | −4.75 | −4.18 | −5.12 |
+0.02 | −5.33 | −4.28 | −5.00 | −4.69 | −4.11 | −5.07 |
+0.01 | −5.32 | −4.21 | −4.95 | −4.63 | −4.02 | −5.03 |
Strain | B | N | Al | Si | S | Ga |
---|---|---|---|---|---|---|
−0.05 | −4.95 | −3.58 | −4.55 | −4.12 | −3.37 | −4.64 |
−0.04 | −5.01 | −3.68 | −4.62 | −4.19 | −3.47 | −4.69 |
−0.03 | −5.13 | −3.86 | −4.74 | −4.35 | −3.67 | −4.82 |
−0.02 | −5.18 | −4.13 | −4.79 | −4.43 | −3.76 | −4.87 |
−0.01 | −5.23 | −4.04 | −4.85 | −4.49 | −3.85 | −4.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmetsadyk, D.; Ismailov, D.; Murzalinov, D.; Partizan, G.; Grichshenko, V. A DFT Study on the Effect of Biaxial Strain on the Electronic Properties of Graphene Doped with B, N, Al, Si, S, and Ga. Materials 2025, 18, 2791. https://doi.org/10.3390/ma18122791
Akhmetsadyk D, Ismailov D, Murzalinov D, Partizan G, Grichshenko V. A DFT Study on the Effect of Biaxial Strain on the Electronic Properties of Graphene Doped with B, N, Al, Si, S, and Ga. Materials. 2025; 18(12):2791. https://doi.org/10.3390/ma18122791
Chicago/Turabian StyleAkhmetsadyk, Dinara, Daniyar Ismailov, Danatbek Murzalinov, Gulmaira Partizan, and Valentina Grichshenko. 2025. "A DFT Study on the Effect of Biaxial Strain on the Electronic Properties of Graphene Doped with B, N, Al, Si, S, and Ga" Materials 18, no. 12: 2791. https://doi.org/10.3390/ma18122791
APA StyleAkhmetsadyk, D., Ismailov, D., Murzalinov, D., Partizan, G., & Grichshenko, V. (2025). A DFT Study on the Effect of Biaxial Strain on the Electronic Properties of Graphene Doped with B, N, Al, Si, S, and Ga. Materials, 18(12), 2791. https://doi.org/10.3390/ma18122791