Experimental Study on Shear Characteristics of Filled Joints Anchored by Basalt Fiber-Reinforced Polymer Materials
Abstract
:1. Introduction
2. Shear Experiment
2.1. Specimen Preparation
2.2. Experimental Equipment
2.3. Experimental Scheme
3. Results of the Experiment
3.1. Shear Stress–Shear Displacement Curves
3.2. Peak Shear Strength
3.3. Normal Displacement–Shear Displacement Curves
3.4. Characterization of Failure of Filled Joints
3.5. Characterization of Failure of BFRP Bolt
4. Acoustic Emission Characterization
4.1. Characteristics of AE Energy Changes
4.2. AE Event Distribution Characteristics
4.3. Discussion
5. Conclusions
- Peak shear strength decreases with increasing filling degree, while normal stress, joint roughness and peak shear strength all show a positive correlation, which is due to the fact that they can directly or indirectly increase the engaging force of the filled joints.
- The normal deformation of bolted filled joints is closely related to the filling degree, with the increase in filling degree, there are three kinds of evolution laws: first shear shrinkage and then shear dilatancy, first shear shrinkage and then shear dilatancy and then shear shrinkage, and shear shrinkage, and JRC and normal stress affect the degree of change in the specimen shear dilatancy-shear shrinkage.
- The failure characteristics of the specimen are affected by the filling layer: the nodular bulge friction and gnawing failure when there is no filling, the filling layer friction and detachment with a small amount of nodular bulge gnawing failure when the filling degree is low, and the filling layer crumbles seriously when the filling degree is high.
- BFRP bolts mainly play a shear capacity in the post-peak plastic stage, some fibers break in the process of shear, achieving the effect of “letting change”, and still have the ability to resist tensile and shear deformation in the later stage. With the increase in filling degree, the distance between A and B deformation critical points increases, and the deformation range of the bolt expands.
- The acoustic emission energy evolution is closely related to the failure of the specimen. The pre-peak elasticity stage of the filled joint specimen basically does not cause damage, and the acoustic emission signal is relatively calm; the plasticity failure occurs mostly in the post-peak plasticity stage, where the acoustic emission energy surges and appears at its maximum, and then returns to be calm in the residual stage. The AE events are mainly concentrated in Stage II, the proportion of which is about the sum of the proportion of Stage I and Stage III, and this proportion increases with the increase in the filling degree.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, W.J.; Wu, G.S.; Liu, H.; Wang, P.; An, B.; Liu, Z.; Zhong, H.; Liu, F. Deformation characteristics and stability control of soft coal-rock mining roadway in thin coal seam. J. China Coal Soc. 2018, 43, 2668–2678. [Google Scholar]
- Huang, Q.X.; Zhao, M.Y.; Zhang, Q.F.; Song, S.; Meng, K. Mechanisms of outward dislocation sliding of roadway sides and its support in a thick coal seam with a soft mudstone interlayer. Rock Soil Mech. 2016, 37, 2353–2358. [Google Scholar]
- Atapour, H.; Moosavi, M. The influence of shearing velocity on shear behavior of artificial joints. Rock Mech. Rock Eng. 2014, 47, 1745–1761. [Google Scholar] [CrossRef]
- Peng, Y.X.; Yu, L.; Qian, J.; Li, W.; Zhang, T.; Zhou, L. Dynamic tensile behavior and crack propagation in coral aggregate seawater shotcrete: Experimental investigation and numerical simulation. Cem. Concr. Compos. 2025, 159, 106010. [Google Scholar] [CrossRef]
- Li, Z.Q.; Nie, L.; Xue, Y.; Li, W.; Fan, K. Model Testing on the Processes, Characteristics, and Mechanism of Water Inrush Induced by Karst Caves Ahead and Alongside a Tunnel. Rock. Mech. Rock. Eng. 2025, 58, 5363–5380. [Google Scholar] [CrossRef]
- Zheng, L.B.; Liu, K.W. Shear behavior of single-joint bolted sandstone subjected to dry–wet cycles: Experimental and analytical approaches. J. Rock Mech. Geotech. Eng. 2024, 16, 4216–4228. [Google Scholar] [CrossRef]
- Liu, J.R.; Luan, H.J.; Jiang, Y.J.; Shang, H.; Wang, M.; Wang, C.; Zhang, S. Effect of normal boundary conditions on the shear mechanics and acoustic emission characteristics of anchored rock joints. J. Min. Sci. Technol. 2025, 10, 173–183. [Google Scholar]
- Xu, W.B.; Chen, W. The triaxial compressive mechanical properties and failure characteristics of backfill-rock combined bodies with different interface angles. J. Min. Sci. Technol. 2023, 8, 633–641. [Google Scholar]
- Liu, H.L.; Yang, G.Y.; Guo, Y.J.; Zhang, Q.; Sun, Z. Experimental study on the shear deformation characteristics and mechanical properties of bolted joints. Int. J. Geomech. 2023, 23, 4022265. [Google Scholar] [CrossRef]
- Cui, G.J.; Zhang, C.Q.; Chen, J.L.; Yang, F.J.; Zhou, H.; Lu, J.J. Effect of bolt inclination angle on shear behavior of bolted joints under CNL and CNS conditions. J. Cent. South Univ. 2020, 27, 937–950. [Google Scholar] [CrossRef]
- Wang, X.; Lou, J.; Li, J.; Gao, F.; Yuan, G. Influence of rockbolt pretension on bolting behaviors by gravel bolting tests. J. Rock Mech. Geotech. Eng. 2025, in press. [CrossRef]
- Wang, G.; Zhang, Y.Z.; Jiang, Y.J.; Liu, P.; Guo, Y.; Liu, J.; Ma, M.; Wang, K.; Wang, S. Shear behaviour and acoustic emission characteristics of bolted rock joints with different roughnesses. Rock Mech. Rock Eng. 2018, 51, 1885–1906. [Google Scholar] [CrossRef]
- Wu, X.Z.; Jiang, Y.J.; Wang, G.; Gong, B. Performance of a new yielding rock bolt under pull and shear loading conditions. Rock Mech. Rock Eng. 2019, 52, 3401–3412. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Jiang, Y.J.; Wang, Z.; Yin, Q.; Chen, M. Anchorage effect of bolt on en-echelon fractures: A comparison between energy-absorbing bolt and conventional rigid bolt. Eng. Fail. Anal. 2022, 137, 106256. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Zhang, S.H.; Luan, H.J.; Wang, C. Experimental study on shear characteristics of bolted rock joints under constant normal stiffness boundary conditions. Chin. J. Rock Mech. Eng. 2021, 40, 663–675. [Google Scholar]
- Zuo, H.F.; Jiang, Y.J.; Li, C.P.; Liu, G.; Zhang, S.; Guan, Y.; Luan, H.; Liu, J.; Li, X. Numerical simulation of anchor angle effect of bolts based on modified model of Pile element. J. Shandong Univ. Sci. Technol. (Nat. Sci.) 2023, 42, 30–39. [Google Scholar]
- Sun, B.J.; Liu, Q.W.; Li, W.T.; Yang, X.Z.; Yang, B.; Li, T.C. Numerical implementation of rock bolts with yield and fracture behaviour under tensile-shear load. Eng. Fail. Anal. 2022, 139, 106462. [Google Scholar] [CrossRef]
- Liu, Q.S.; Lei, G.F.; Peng, X.X.; Wei, L. Study on shear mechanical properties of sandstone, marble and granite after anchoring. Chin. J. Rock Mech. Eng. 2018, 37 (Suppl. S2), 4007–4015. [Google Scholar]
- Tao, Z.G.; Xie, D.; Sui, Q.R.; Sun, J.; He, M. Study on active support method and control effect of NPR anchor cables for large deformation of tunnel surrounding rock under complex geological conditions. Chin. J. Rock Mech. Eng. 2024, 43, 276–286. [Google Scholar]
- Wang, W.; Pan, Y.S.; Xiao, Y.H. Synergistic resin anchoring technology of rebar bolts in coal mine roadways. Int. J. Rock Mech. Min. Sci. 2022, 151, 105034. [Google Scholar] [CrossRef]
- Li, G.F.; Wang, J.H.; Liu, J.R.; Luan, H.; Zhang, S.; Wang, C.; Wang, D. Study on shear properties and failure characteristics of bolted joint of roadway surrounding rock. J. Shandong Univ. Sci. Technol. (Nat. Sci.) 2022, 41, 47–55. [Google Scholar]
- Luan, H.J.; Cao, Y.W.; Jiang, Y.J.; Guan, Y.; Li, C.; Sun, J.; Liu, J. Implementation of tension-shear coupling failure mode of rock bolts in FLAC3D and its application. J. Min. Strat. Control Eng. 2022, 4, 63029. [Google Scholar]
- Liu, H.S.; Luan, H.J.; Qiao, J.L.; Li, G.; Zhang, S. Failure mechanism and strengthening support technology of gangue-containing coal roadway sidewall. J. Min. Strat. Control Eng. 2022, 4, 33031. [Google Scholar]
- He, M.C.; Ren, S.L.; Guo, L.J.; Lin, W.; Zhang, T.; Tao, Z. Experimental study on influence of host rock strength on shear performance of Micro-NPR steel bolted rock joints. Int. J. Rock Mech. Min. Sci. 2022, 159, 105236. [Google Scholar] [CrossRef]
- Wu, X.Z.; Jiang, Y.J.; Gong, B.; Deng, T.; Guan, Z. Behaviour of rock joint reinforced by energy-absorbing rock bolt under cyclic shear loading condition. Int. J. Rock Mech. Min. Sci. 2018, 110, 88–96. [Google Scholar] [CrossRef]
- Han, G.S.; Chen, Z.J.; Li, B.; Zhou, Y.; Ding, S.; Zhong, Z. Experimental study on shear characteristics of energy-absorbing bolt anchored jointed rock mass under constant normal stiffness condition. Chin. J. Rock Mech. Eng. 2024, 43, 999–1012. [Google Scholar]
- Fan, X.C.; Xu, T.; Zhou, Z.R.; Zhou, X. Experimental study on basic mechanical properties of BFRP bars. IOP Conf. Ser. Mater. Sci. Eng. 2017, 250, 12014. [Google Scholar] [CrossRef]
- Protchenko, K.; Zayoud, F.; Urbanski, M.; Szmigiera, E. Tensile and shear testing of basalt fiber reinforced polymer (BFRP) and hybrid basalt/carbon fiber reinforced polymer (HFRP) bars. Materials 2020, 13, 5839. [Google Scholar] [CrossRef] [PubMed]
- Duo, Y.Y.; Liu, X.G.; Liu, Y.; Tafsirojjaman, T.; Sabbrojjaman, M. Environmental impact on the durability of FRP reinforcing bars. J. Build. Eng. 2021, 43, 102909. [Google Scholar] [CrossRef]
- Cao, X.F.; Zhao, W.; Xie, Q.; Yang, G. Experimental study on mechanical properties of basalt fiber reinforced plastic rebar. Highw. Eng. 2016, 41, 215–217. [Google Scholar]
- Zhang, S.B.; Wang, C.S.; Wang, G.; Wu, X.; Zheng, X.; He, P.; Xu, F. Experimental study on the shear behaviors of bolted rock joints reinforced with BFRP bars. Chin. J. Rock Mech. Eng. 2022, 41, 712–724. [Google Scholar]
- Zhang, S.B.; Wang, C.S.; Wang, G.; Zheng, X.; Guan, H.; Liu, T.; Xu, F. Experimental and numerical study on shear behaviors of rock joints reinforced by SFCBs and BFRP bars. Rock Mech. Rock Eng. 2022, 56, 1717–1737. [Google Scholar] [CrossRef]
- Xie, J.Z.; Wang, X.; Ding, L.N.; Peng, Z.; Liu, X.; Mao, W.; Wu, Z. Shear behavior of BFRP anchor-jointed rock mass considering inclination angle and pre-tension. Constr. Build. Mater. 2024, 447, 138157. [Google Scholar] [CrossRef]
- Wang, H.P.; Song, Y.; Zhou, J.H.; Mao, J.; Zhang, W. Research on the mechanical model of anchorage resistance in deeply filled jointed rock masses. Eng. Fail. Anal. 2024, 163, 108565. [Google Scholar] [CrossRef]
- Wei, H.; Wu, H.G.; Wu, D.Y.; Tang, L.; Pai, L.F.; Guan, W. Stress response characteristics of BFRP anchors on loess mudstone slope under rainfall conditions. J. Mt. Sci. 2023, 20, 1469–1482. [Google Scholar] [CrossRef]
- Du, Z.G.; Li, N.; Ding, W.X.; Tao, Y.; Wu, X.; Guo, J.; You, P.; Wang, C.; Archbold, P.; Mullarney, B. Development of the Large–Tonnage Pressure–Type Prestressed Anchor Cable with BFRP for Geotechnical Engineering and Its Mechanical Properties. Geofluids 2022, 4, 7467842. [Google Scholar] [CrossRef]
- Culshaw, M.G.; Ulusay, R. The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014. Bull. Eng. Geol. Environ. 2015, 74, 1499–1500. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.P.; Zhang, W.D.; Zhao, L.; Zhou, J.; Mao, J. Shear characteristics of anchored filling jointed rock mass under constant normal stiffness. Rock Soil Mech. 2024, 45, 2695–2706. [Google Scholar]
- Ladanyi, B.; Archambault, G. Shear Strength and Deformability of Filled Indented Joints; Associazione Geotechnica Italiana: Rome, Italy, 1977; pp. 317–326. [Google Scholar]
- Zhao, Y.L.; Zhang, L.Y.; Wang, W.J.; Liu, Q.; Tang, L.L.; Chen, G. Experimental study on shear behavior and a revised shear strength model for infilled rock joints. Int. J. Geomech. 2020, 20, 4020141. [Google Scholar] [CrossRef]
- Simangunsong, G. Effect of normal stress on direct shear test. In Proceedings of the International Symposium on Earth Science and Technology, Fukuoka, Japan, 25–26 November 2021. [Google Scholar]
- Wu, X.Z.; Zheng, H.F.; Jiang, Y.J.; Guan, Z.; Miao, Y. Experimental and numerical simulation research of shear characteristics of infilled rock joints reinforced by rock bolt. J. Eng. Geol. 2024, 32, 1814–1824. [Google Scholar]
- Wu, X.Z.; Jiang, Y.J.; Li, B. Influence of joint roughness on the shear behaviour of fully encapsulated rock bolt. Rock Mech. Rock Eng. 2018, 51, 953–959. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Q.S.; Wang, X.C.; Yu, L.Y.; Li, Z.Q. Synergistic effect of particle size, carboxymethyl starch and Na2CO3 on rheological and filtration property of bentonite-based material. Case Stud. Constr. Mater. 2024, 21, e03537. [Google Scholar] [CrossRef]
- Li, W.; Yu, L.Y.; Tan, Y.Z.; Wu, L.R.; Qian, J.Y. Mechanical properties and impact behavior of frozen clay: Insights from static mechanical tests, fly-plate tests, and split-Hopkinson pressure bar analysis. In Physics of Fluids; AIP Publishing: Melville, NY, USA, 2024; Volume 36, p. 57138. [Google Scholar]
- Li, W.; Yu, L.; Zhang, T. Quantitative analysis of grain size effect on tensile mechanical behavior of granite based on multi-level force chain networks. Comp. Part. Mech. 2024, 11, 2245–2266. [Google Scholar] [CrossRef]
- Song, Y.; Fan, B.; Wang, H.P. Research on shear mechanics model of anchored-jointed rock mass considering normal stress and rock strength. Chin. J. Rock Mech. Eng. 2023, 42, 1325–1335. [Google Scholar]
- Wang, L.Q.; Zhu, L.F.; Zheng, L.B.; Fan, B.; Sun, Z.; Chen, H. Shear test of bolted joint rock masses considering joint roughness. China J. Highw. Transp. 2021, 34, 38–47. [Google Scholar]
- Wang, C.S.; Jiang, Y.J.; Wang, G.; Luan, H.; Zhang, Y.; Zhang, S. Experimental investigation on the shear behavior of the bolt-grout interface under CNL and CNS conditions considering realistic bolt profiles. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 111. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, Z.; Wu, W.B.; Yao, Z.; Wang, T.; Li, X.; Chen, L. Research on acoustic emission characteristics and failure mechanism of granite treated by repeated cooling. J. Shandong Univ. Sci. Technol. (Nat. Sci.) 2024, 43, 1–9. [Google Scholar]
- Dong, H.Y. Experimental Study on Mechanical Shear Properties of Irregular Rock Fractures. Master’s Thesis, Henan University of Science and Technology, Luoyang, China, 2017. [Google Scholar]
Specimens | Normal Stress/MPa | Filling Degree | JRC |
---|---|---|---|
1~5 | 2 | 0.0, 0.5, 1.0, 1.5, 2.0 | J2 |
6~10 | 4 | 0.0, 0.5, 1.0, 1.5, 2.0 | J1 |
11~15 | 4 | 0.0, 0.5, 1.0, 1.5, 2.0 | J2 |
16~20 | 4 | 0.0, 0.5, 1.0, 1.5, 2.0 | J3 |
21~25 | 6 | 0.0, 0.5, 1.0, 1.5, 2.0 | J2 |
0 | 0.5 | 1 | 1.5 | 2 | |
---|---|---|---|---|---|
2 MPa | 3.51 | 3.37 | 3.16 | 2.80 | 2.52 |
4 MPa | 5.15 | 4.91 | 4.71 | 4.33 | 3.92 |
6 MPa | 6.65 | 6.47 | 6.30 | 5.60 | 5.15 |
0 | 0.5 | 1 | 1.5 | 2 | |
---|---|---|---|---|---|
J1 | 4.85 | 4.48 | 4.24 | 4.11 | 3.80 |
J2 | 5.15 | 4.91 | 4.71 | 4.33 | 3.92 |
J3 | 5.97 | 5.01 | 4.97 | 4.80 | 4.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, H.; Shi, Q.; Wang, C.; Jiang, Y.; Zhang, S.; Liu, J.; Liu, K. Experimental Study on Shear Characteristics of Filled Joints Anchored by Basalt Fiber-Reinforced Polymer Materials. Materials 2025, 18, 2393. https://doi.org/10.3390/ma18102393
Luan H, Shi Q, Wang C, Jiang Y, Zhang S, Liu J, Liu K. Experimental Study on Shear Characteristics of Filled Joints Anchored by Basalt Fiber-Reinforced Polymer Materials. Materials. 2025; 18(10):2393. https://doi.org/10.3390/ma18102393
Chicago/Turabian StyleLuan, Hengjie, Qingzhai Shi, Changsheng Wang, Yujing Jiang, Sunhao Zhang, Jianrong Liu, and Kun Liu. 2025. "Experimental Study on Shear Characteristics of Filled Joints Anchored by Basalt Fiber-Reinforced Polymer Materials" Materials 18, no. 10: 2393. https://doi.org/10.3390/ma18102393
APA StyleLuan, H., Shi, Q., Wang, C., Jiang, Y., Zhang, S., Liu, J., & Liu, K. (2025). Experimental Study on Shear Characteristics of Filled Joints Anchored by Basalt Fiber-Reinforced Polymer Materials. Materials, 18(10), 2393. https://doi.org/10.3390/ma18102393