Application of NaP1 Zeolite Modified with Silanes in Bitumen Foaming Process
Abstract
:1. Introduction
- -
- introducing additives into the bitumen that reduce its viscosity and improve its adhesion to the aggregate (e.g., waxes, chemical additives)
- -
- foaming the bitumen by adding water, increasing the volume of the bitumen by several times and reducing its viscosity in a short interval.
2. Materials and Methods
2.1. Materials
2.2. NaP1 Zeolite Matrix Synthesis
2.3. Composite Synthesis
2.4. Testing Methods
3. Results and Discussion
3.1. Characterisation of Zeolite–Silane Composites
3.2. Properties of Bitumen Foamed with Zeolite–Silane Composites
4. Conclusions
- (1)
- evaluation of the effect of introducing a higher amount of silane into the zeolite matrix, which should have a positive effect on the change in surface energy of the foamed bitumen;
- (2)
- evaluation of the rheological properties and testing of the surface free energy of bitumen foamed with zeolite–silane composites.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belviso, C. State-of-the-Art Applications of Fly Ash from Coal and Biomass: A Focus on Zeolite Synthesis Processes and Issues. Prog. Energy Combust. Sci. 2018, 65, 109–135. [Google Scholar] [CrossRef]
- Gottardi, G.; Galli, E. Natural Zeolites; Minerals and Rocks; Springer: Berlin/Heidelberg, Germany, 1985; Volume 18, ISBN 978-3-642-46520-8. [Google Scholar]
- Wdowin, M.; Franus, M.; Panek, R.; Badura, L.; Franus, W. The Conversion Technology of Fly Ash into Zeolites. Clean Technol. Environ. Policy 2014, 16, 1217–1223. [Google Scholar] [CrossRef]
- Rambau, K.M.; Musyoka, N.M.; Panek, R.; Franus, W.; Wdowin, M.; Manyala, N. Preparation of Coal Fly Ash Derived Metal Organic Frameworks and Their Carbon Derivatives. Mater. Today Commun. 2021, 27, 102433. [Google Scholar] [CrossRef]
- Omar, H.M.; Rohani, S. Removal of CO2 from Landfill Gas with Landfill Leachate Using Absorption Process. Int. J. Greenh. Gas Con. 2017, 58, 159–168. [Google Scholar] [CrossRef]
- Qi, Y.; Qian, K.; Chen, J.; Yifeng, E.; Shi, Y.; Li, H.; Zhao, L. A Thermoreversible Antibacterial Zeolite-Based Nanoparticles Loaded Hydrogel Promotes Diabetic Wound Healing via Detrimental Factor Neutralization and ROS Scavenging. J. Nanobiotechnol. 2021, 19, 414. [Google Scholar] [CrossRef] [PubMed]
- Price, L.; Leung, K.M.; Sartbaeva, A. Local and Average Structural Changes in Zeolite a upon Ion Exchange. Magnetochemistry 2017, 3, 42. [Google Scholar] [CrossRef]
- Styczeń, J.; Barnat-Hunek, D.; Panek, R.; Franus, W. The Microstructural and Physical Properties of Renovation Renders with Clinoptilolite, Na-P1 and Na-X Zeolites. Constr. Build. Mater. 2020, 261, 120016. [Google Scholar] [CrossRef]
- Woszuk, A. Application of Fly Ash Derived Zeolites in Warm-Mix Asphalt Technology. Materials 2018, 11, 1542. [Google Scholar] [CrossRef]
- Rubio, M.C.; Martínez, G.; Baena, L.; Moreno, F. Warm Mix Asphalt: An Overview. J. Clean Prod. 2012, 24, 76–84. [Google Scholar] [CrossRef]
- Wasiuddin, N.M.; Selvamohan, S.; Zaman, M.M.; Guegan, M.L.T.A. Comparative Laboratory Study of Sasobit and Aspha-Min Additives in Warm-Mix Asphalt. Transp. Res. Rec. 1998, 1, 82–88. [Google Scholar] [CrossRef]
- Von Devivere, M.; Barthel, W.; Marchand, J.-P. WARM ASPHALT MIXES BY ADDING ASPHA-MIN® A SYNTHETIC ZEOLITE. Available online: https://proceedings-durban2003.piarc.org/en/pdf/doc_pdf/communications/C78fp-Devivere-e.pdf (accessed on 28 November 2024).
- Zhang, Y.; Leng, Z.; Zou, F.; Wang, L.; Chen, S.S.; Tsang, D.C.W. Synthesis of Zeolite A Using Sewage Sludge Ash for Application in Warm Mix Asphalt. J. Clean Prod. 2018, 172, 686–695. [Google Scholar] [CrossRef]
- Sengoz, B.; Topal, A.; Gorkem, C. Evaluation of Natural Zeolite as Warm Mix Asphalt Additive and Its Comparison with Other Warm Mix Additives. Constr. Build. Mater. 2013, 43, 242–252. [Google Scholar] [CrossRef]
- Topal, A.; Sengoz, B.; Kok, B.V.; Yilmaz, M.; Aghazadeh Dokandari, P.; Oner, J.; Kaya, D. Evaluation of Mixture Characteristics of Warm Mix Asphalt Involving Natural and Synthetic Zeolite Additives. Constr. Build. Mater. 2014, 57, 38–44. [Google Scholar] [CrossRef]
- Woszuk, A.; Zofka, A.; Bandura, L.; Franus, W. Effect of Zeolite Properties on Asphalt Foaming. Constr. Build. Mater. 2017, 139, 247–255. [Google Scholar] [CrossRef]
- Xing, C.; Tang, S.; Chang, Z.; Han, Z.; Li, H.; Zhu, B. A Comprehensive Review on the Plant-Mixed Cold Recycling Technology of Emulsified Asphalt: Raw Materials and Factors Affecting Performances. Constr. Build. Mater. 2024, 439, 137344. [Google Scholar] [CrossRef]
- Sakib, N.; Bhasin, A.; Islam, M.K.; Khan, K.; Khan, M.I. A Review of the Evolution of Technologies to Use Sulphur as a Pavement Construction Material. Int. J. Pavement Eng. 2021, 22, 392–403. [Google Scholar] [CrossRef]
- Iqbal, M.; Hussain, A.; Khattak, A.; Ahmad, K. Improving the Aging Resistance of Asphalt by Addition of Polyethylene and Sulphur. Civ. Eng. J. 2020, 6, 1017–1030. [Google Scholar] [CrossRef]
- Azari, A.; Hossein Mahvi, A.; Naseri, S.; Rezaei Kalantary, R.; Saberi, M. Nitrate Removal from Aqueous Solution by Using Modified Clinoptilolite Zeolite. Arch. Hyg. Sci. 2014, 3, 184–192. [Google Scholar]
- Shi, J.; Yang, Z.; Dai, H.; Lu, X.; Peng, L.; Tan, X.; Shi, L.; Fahim, R. Preparation and Application of Modified Zeolites as Adsorbents in Wastewater Treatment. Water Sci. Technol. 2017, 2017, 621–635. [Google Scholar] [CrossRef] [PubMed]
- Weitkamp, J. Zeolites and Catalysis. Solid State Ion. 2000, 131, 175–188. [Google Scholar] [CrossRef]
- Mhamdi, M.; Ghorbel, A.; Delahay, G. Influence of the V + Mo/Al Ratio on Vanadium and Molybdenum Speciation and Catalytic Properties of V-Mo-ZSM-5 Prepared by Solid-State Reaction. Catal. Today 2009, 142, 239–244. [Google Scholar] [CrossRef]
- Janas, J.; Gurgul, J.; Socha, R.P.; Kowalska, J.; Nowinska, K.; Shishido, T.; Che, M.; Dzwigaj, S. Influence of the Content and Environment of Chromium in CrSiBEA Zeolites on the Oxidative Dehydrogenation of Propane. J. Phys. Chem. C 2009, 113, 13273–13281. [Google Scholar] [CrossRef]
- Chalupka, K.A.; Casale, S.; Zurawicz, E.; Rynkowski, J.; Dzwigaj, S. The Remarkable Effect of the Preparation Procedure on the Catalytic Activity of CoBEA Zeolites in the Fischer-Tropsch Synthesis. Microporous Mesoporous Mater. 2015, 211, 9–18. [Google Scholar] [CrossRef]
- Goscianska, J.; Ptaszkowska-Koniarz, M.; Frankowski, M.; Franus, M.; Panek, R.; Franus, W. Removal of Phosphate from Water by Lanthanum-Modified Zeolites Obtained from Fly Ash. J. Colloid Interface Sci. 2018, 513, 72–81. [Google Scholar] [CrossRef]
- He, Y.; Lin, H.; Dong, Y.; Wang, L. Preferable Adsorption of Phosphate Using Lanthanum-Incorporated Porous Zeolite: Characteristics and Mechanism. Appl. Surf. Sci. 2017, 426, 995–1004. [Google Scholar] [CrossRef]
- Saifuddin, M.; Bae, J.; Kim, K.S. Role of Fe, Na and Al in Fe-Zeolite-A for Adsorption and Desorption of Phosphate from Aqueous Solution. Water Res. 2019, 158, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Cieśla, J.; Franus, W.; Franus, M.; Kedziora, K.; Gluszczyk, J.; Szerement, J.; Jozefaciuk, G. Environmental-Friendly Modifications of Zeolite to Increase Its Sorption and Anion Exchange Properties, Physicochemical Studies of the Modified Materials. Materials 2019, 12, 3213. [Google Scholar] [CrossRef]
- Mokrzycki, J.; Fedyna, M.; Marzec, M.; Szerement, J.; Panek, R.; Klimek, A.; Bajda, T.; Mierzwa-Hersztek, M. Copper Ion-Exchanged Zeolite X from Fly Ash as an Efficient Adsorbent of Phosphate Ions from Aqueous Solutions. J. Environ. Chem. Eng. 2022, 10, 108567. [Google Scholar] [CrossRef]
- Wei, P.; Qu, X.; Dong, H.; Zhang, L.; Chen, H.; Gao, C. Silane-Modified NaA Zeolite/PAAS Hybrid Pervaporation Membranes for the Dehydration of Ethanol. J. Appl. Polym. Sci. 2013, 128, 3390–3397. [Google Scholar] [CrossRef]
- Li, Y.; Guan, H.M.; Chung, T.S.; Kulprathipanja, S. Effects of Novel Silane Modification of Zeolite Surface on Polymer Chain Rigidification and Partial Pore Blockage in Polyethersulfone (PES)-Zeolite A Mixed Matrix Membranes. J. Memb. Sci. 2006, 275, 17–28. [Google Scholar] [CrossRef]
- Dong, H.; Qu, X.Y.; Zhang, L.; Cheng, L.H.; Chen, H.L.; Gao, C.J. Preparation and Characterization of Surface-Modified Zeolite-Polyamide Thin Film Nanocomposite Membranes for Desalination. Desalination Water Treat. 2011, 34, 6–12. [Google Scholar] [CrossRef]
- Fadillah, G.; Chasanah, U. In Surface Modification of Natural Zeolite with Silane Agent as Effective Materials for Removal of Ammonium. AIP Conf. Proc. 2020, 2229, 030029. [Google Scholar]
- Hou, J.; Jiang, Q. Preparation of Nanosized NaA Zeolite and Its Surface Modification by KH-550. Mater. Sci. Pol. 2018, 36, 638–643. [Google Scholar] [CrossRef]
- Yılmaz, Ş.; Şahan, T.; Karabakan, A. Response Surface Approach for Optimization of Hg(II) Adsorption by 3-Mercaptopropyl Trimethoxysilane-Modified Kaolin Minerals from Aqueous Solution. Korean J. Chem. Eng. 2017, 34, 2225–2235. [Google Scholar] [CrossRef]
- Hou, Z.; Zhou, D.; Chen, Q.; Xin, Z. Effect of Different Silane Coupling Agents In-Situ Modified Sepiolite on the Structure and Properties of Natural Rubber Composites Prepared by Latex Compounding Method. Polymers 2023, 15, 1620. [Google Scholar] [CrossRef]
- Bandura, L.; Franus, M.; Józefaciuk, G.; Franus, W. Synthetic Zeolites from Fly Ash as Effective Mineral Sorbents for Land-Based Petroleum Spills Cleanup. Fuel 2015, 147, 100–107. [Google Scholar] [CrossRef]
- Mercantili, L.; Davis, F.; Higson, S.P.J. Ultrasonic Initiation of the Alkaline Hydrolysis of Triglycerides (Saponification) without Phase Catalysis. J. Surfactants Deterg. 2014, 17, 133–141. [Google Scholar] [CrossRef]
- Abdellaoui, Y.; El Ibrahimi, B.; Ahrouch, M.; Kassab, Z.; El Kaim Billah, R.; Coppel, Y.; López-Maldonado, E.A.; Abou Oualid, H.; Díaz de León, J.N.; Leiviskä, T.; et al. New Hybrid Adsorbent Based on APTES Functionalized Zeolite W for Lead and Cadmium Ions Removal: Experimental and Theoretical Studies. Chem. Eng. J. 2024, 499, 156056. [Google Scholar] [CrossRef]
- Djambaski, P.; Aleksieva, P.; Emanuilova, E.; Chernev, G.; Spasova, D.; Nacheva, L.; Kabaivanova, L.; Salvado, I.M.M.; Samuneva, B. Sol-Gel Nanomaterials with Algal Heteropolysaccharide for Immobilization of Microbial Cells, Producing a-Galactosidase and Nitrilase. Biotechnol. Biotechnol. Equip. 2009, 23, 1270–1274. [Google Scholar] [CrossRef]
- Chen, F.; Shen, S.; Xu, X.J.; Xu, R.; Kooli, F. Modification of Micropore-Containing SBA-3 by TEOS Liquid Phase Deposition. Microporous Mesoporous Mater. 2005, 79, 85–91. [Google Scholar] [CrossRef]
- Bandura, L.; Białoszewska, M.; Malinowski, S.; Franus, W. Adsorptive Performance of Fly Ash-Derived Zeolite Modified by β-Cyclodextrin for Ibuprofen, Bisphenol A and Caffeine Removal from Aqueous Solutions–Equilibrium and Kinetic Study. Appl. Surf. Sci. 2021, 562, 150160. [Google Scholar] [CrossRef]
- Bień, T.; Kołodyńska, D.; Franus, W. Functionalization of Zeolite Nap1 for Simultaneous Acid Red 18 and Cu(Ii) Removal. Materials 2021, 14, 7817. [Google Scholar] [CrossRef]
- Sanaeepur, H.; Kargari, A.; Nasernejad, B. Aminosilane-Functionalization of a Nanoporous Y-Type Zeolite for Application in a Cellulose Acetate Based Mixed Matrix Membrane for CO2 Separation. RSC Adv. 2014, 4, 63966–63976. [Google Scholar] [CrossRef]
- Read, J.; David, W. The Shell Bitumen Handbook, 5th ed.; Hunter, R., Ed.; Thomas Telford Publishing: London, UK, 2003. [Google Scholar]
- Wróbel, M.; Woszuk, A.; Franus, W. Laboratory Methods for Assessing the Influence of Improper Asphalt Mix Compaction on Its Performance. Materials 2020, 13, 2476. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, M.; Woszuk, A.; Ratajczak, M.; Franus, W. Properties of Reclaimed Asphalt Pavement Mixture with Organic Rejuvenator. Constr Build. Mater. 2021, 271, 121514. [Google Scholar] [CrossRef]
- Woszuk, A.; Wróbe, M.; Franus, W. Application of Zeolite Tuffs as Mineral Filler in Warm Mix Asphalt. Materials 2020, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Akisetty, C.; Xiao, F.; Gandhi, T.; Amirkhanian, S. Estimating Correlations between Rheological and Engineering Properties of Rubberized Asphalt Concrete Mixtures Containing Warm Mix Asphalt Additive. Constr. Build. Mater. 2011, 25, 950–956. [Google Scholar] [CrossRef]
- Akisetty, C.K.; Lee, S.J.; Amirkhanian, S.N. High Temperature Properties of Rubberized Binders Containing Warm Asphalt Additives. Constr. Build. Mater. 2009, 23, 565–573. [Google Scholar] [CrossRef]
- Hossain, Z.; Zaman, M.; O’Rear, E.A.; Chen, D.H. Effectiveness of Water-Bearing and Anti-Stripping Additives in Warm Mix Asphalt Technology. Int. J. Pavement Eng. 2012, 13, 424–432. [Google Scholar] [CrossRef]
- Woszuk, A.; Wróbel, M.; Franus, W. Influence of Waste Engine Oil Addition on the Properties of Zeolite-Foamed Asphalt. Materials 2019, 12, 2265. [Google Scholar] [CrossRef]
NaP1 | NaP1:TEOS | NaP1:TESPT | NaP1:MPTS | |
---|---|---|---|---|
Al2O3 | 17.76 | 18.61 | 17.97 | 14.49 |
SiO2 | 33.43 | 37.14 | 37.33 | 37.46 |
SO3 | 0.14 | 0.09 | 2.52 | 8.44 |
Viscosity at 135 °C | Penetration [0.1 mm] | Softening Point [°C] | |||
---|---|---|---|---|---|
Time [min] | 15 | 30 | 45 | X | X |
PMB asphalt | 1435 | 1435 | 1430 | 65.8 | 59.5 |
PMB + NaP1 | 1500 | 1480 | 1475 | 62.5 | 59.2 |
PMB + NaP1-TEOS | 1485 | 1465 | 1460 | 63.2 | 59.6 |
PMB + NaP1-MPTS | 1435 | 1420 | 1410 | 63.6 | 59.8 |
PMB + NaP1-TESPT | 1435 | 1435 | 1430 | 63.4 | 59.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinowski, S.; Pacholak, R.; Kołodziej, K.; Woszuk, A. Application of NaP1 Zeolite Modified with Silanes in Bitumen Foaming Process. Materials 2024, 17, 5902. https://doi.org/10.3390/ma17235902
Malinowski S, Pacholak R, Kołodziej K, Woszuk A. Application of NaP1 Zeolite Modified with Silanes in Bitumen Foaming Process. Materials. 2024; 17(23):5902. https://doi.org/10.3390/ma17235902
Chicago/Turabian StyleMalinowski, Szymon, Roman Pacholak, Krzysztof Kołodziej, and Agnieszka Woszuk. 2024. "Application of NaP1 Zeolite Modified with Silanes in Bitumen Foaming Process" Materials 17, no. 23: 5902. https://doi.org/10.3390/ma17235902
APA StyleMalinowski, S., Pacholak, R., Kołodziej, K., & Woszuk, A. (2024). Application of NaP1 Zeolite Modified with Silanes in Bitumen Foaming Process. Materials, 17(23), 5902. https://doi.org/10.3390/ma17235902