Adiabatic Shear Localization in Metallic Materials: Review
Abstract
:1. Overview of Adiabatic Shear Instability
2. Research Methods on Adiabatic Shear Instability
2.1. High-Strain-Rate Experimental Method
2.2. Specimens for Shear Instability Research
- Cylindrical specimen
- Hat-shaped specimen
- Shear compression specimen
- Numerical simulation of adiabatic shear instability
3. Various Deformation Mechanisms Within ASBs
3.1. Formation of ASBs
3.2. Grain Refinement Within ASBs
3.3. Phase Transformation Within ASBs
3.4. Twinning Within ASBs
3.5. Amorphization Within ASBs
4. Temperature Evolution in Adiabatic Shear Region
5. Summary and Prospect
5.1. Summary
- The application of ASB: The phenomenon of adiabatic shear instability is prevalent in metalworking and high-strain-rate service fields. In high-velocity impact or during the penetration of projectiles, it is crucial to suppress this instability to prevent deformation or even fracturing by the projectile, which can adversely affect its penetration capability. On the other hand, this instability can also be leveraged to maintain a sharp shape of the projectile, enhancing its penetration ability. In armor protection, it is necessary to avoid the occurrence of such phenomena to improve defensive capabilities. In metalworking, high-speed cutting processes can take advantage of this effect to enhance cutting efficiency and reduce cutting forces and temperatures, thereby improving operational efficiency. During forging, it is essential to prevent the emergence of this phenomenon, as it indicates impending failure. In the context of SPD, the influence of ASB must be carefully weighed. While the formation of shear bands can assist in grain refinement, it may also lead to microstructural inhomogeneity. In high-strain-rate service environments, such as aerospace and automotive industries, avoiding this instability is vital, as it directly impacts the safety and reliability of aircraft and motor vehicles.
- High-strain-rate experiments: The SHPB method is widely used due to its simplicity, reliable data, and compatibility with various advanced characterization techniques such as high-speed imaging, temperature measurement, synchrotron radiation, and DIC. The TWC experimental approach can generate a large number of ASBs, which is crucial for quantitative statistical analysis of ASBs. Ballistic impact testing closely resembles real-world applications and plays an irreplaceable role in evaluating the impact resistance and dynamic response of materials. Drop-weight tests are more suitable for studying the dynamic response of materials under low-speed impacts. Laser shock compression provides extreme strain rate conditions that are unmatched by other high-strain rate methods, serving as an essential tool for exploring material behavior under extreme conditions. Beyond high-strain-rate methodologies, the geometry of the samples is equally critical. Cylindrical samples that undergo spontaneous shear localization effectively reflect the true performance of the materials. Hat-shaped samples that undergo forced shear localization and SCS samples induce ASBs in designated areas through their unique geometries, allowing for more targeted research on the phenomenon of adiabatic shear instability, thus finding widespread applications. Due to the extreme conditions of high-strain-rate deformation processes, numerical simulation methods such as finite element, crystal plasticity finite element, and molecular dynamics have been widely applied. At the same time, due to their high accuracy, they possess the advantage of predicting adiabatic shear localization and even simulating the microstructural evolution within ASB at the atomic scale. Therefore, they play an important role in predicting the service performance of materials at high strain rates and deepening the understanding of adiabatic shear instability phenomena.
- The formation of ASB can be roughly categorized into two main theories. The first is the thermal softening or thermoplastic instability theory, which posits that under conditions of high-strain-rate loading, there is no thermal interaction between the localized deformation zone and the external environment. This situation causes most of the plastic work to convert into heat, stored internally within the material, leading to a significant rise in temperature. As the thermal softening effect gradually becomes predominant, ASB formation occurs when the slope of the stress–strain curve reaches zero. The second theory is the microstructural softening theory, which asserts that the softening effects at the microstructural level also play a crucial role in adiabatic shear instability. The nucleation, growth, and aggregation of microvoids and cracks contribute to a stress collapse phenomenon. The DRX phenomenon is often regarded as a softening factor that induces the occurrence of adiabatic shear instability and consequently leads to the formation of ASB. Furthermore, the evolution of various microstructures within the adiabatic shear zone cannot be overlooked in its influence on either promoting or suppressing the formation of ASB.
- Microstructure evolution within ASB:
- (1)
- The phenomenon of grain refinement, recognized as the most significant feature in ASB, has been extensively studied. Most studies on estimating the temperature in ASB regions and calculating RDR kinetics support the mechanism of DRX responsible for grain refinement. However, some studies indicate that the temperature increase within ASB is limited, suggesting that grain refinement may be predominantly driven by dislocation migration or DRV. A stress gradient caused by an inhomogeneous microstructure may locally induce DRX in the material.
- (2)
- Phase transformation within ASB, characterized by fine and dispersed phases, aids in the absorption and dissipation of impact energy, thereby suppressing the formation of ASB. Simultaneously, the partitioning of the initial structure during phase transformation promotes further refinement of microstructures.
- (3)
- Twinning, as a rapid plastic deformation mode, adapts better to high-strain-rate loading environments compared to dislocation slips. The generation of twin boundaries and their interaction with dislocations enhance the material’s ability for uniform deformation, and the presence of twinning can effectively inhibit the occurrence of ASB.
- (4)
- The emergence of amorphization typically indicates a significant rise in temperature within ASB and, subsequently, rapid cooling. However, some studies suggest that amorphization may result from high-density defects induced under extreme deformation conditions within ASB. Additionally, the process of amorphization aids in defect release, contributing to enhanced impact resistance of the material.
- Temperature within the ASB: The increase in temperature is related to the ratio of plastic work to heat dissipation during the deformation process, which is influenced by the microstructure in the material and the development of failure. The thermal–mechanical conversion ratio varies significantly in different materials rather than the presumed constant value of 0.9. Different deformation mechanisms, such as twinning, typically store lower energy levels, and both strain rate and total strain can impact the conversion ratio. The measured results for temperature in the ASB region indicate that the temperature rise in the adiabatic shear zone is limited, while significant temperature increases occur after the formation of ASB. These findings challenge traditional explanations of thermoplastic instability in relation to the formation of the ASB.
5.2. Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sangid, M.D. The physics of fatigue crack initiation. Int. J. Fatigue 2013, 57, 58–72. [Google Scholar] [CrossRef]
- Armstrong, R.W.; Walley, S.M. High strain rate properties of metals and alloys. Int. Mater. Rev. 2013, 53, 105–128. [Google Scholar] [CrossRef]
- Antolovich, S.D.; Armstrong, R.W. Plastic strain localization in metals: Origins and consequences. Prog. Mater. Sci. 2014, 59, 1–160. [Google Scholar] [CrossRef]
- Lieou, C.K.C.; Mourad, H.M.; Bronkhorst, C.A. Strain localization and dynamic recrystallization in polycrystalline metals: Thermodynamic theory and simulation framework. Int. J. Plast. 2019, 119, 171–187. [Google Scholar] [CrossRef]
- Gray, G.T., III. High-strain-rate deformation: Mechanical behavior and deformation substructures induced. Annu. Rev. Mater. Res. 2012, 42, 285–303. [Google Scholar] [CrossRef]
- Yan, N.; Li, Z.Z.; Xu, Y.B.; Meyers, M.A. Shear Localization in Metallic Materials at High Strain Rates. Prog. Mater. Sci. 2021, 119, 100755. [Google Scholar] [CrossRef]
- Guan, X.R.; Chen, Q.; Qu, S.J.; Cao, G.J.; Wang, H.; Ran, X.D.; Feng, A.H.; Chen, D.L. High-strain-rate deformation: Stress-induced phase transformation and nanostructures in a titanium alloy. Int. J. Plast. 2023, 169, 103707. [Google Scholar] [CrossRef]
- Xu, Y.B.; Zhang, J.H.; Bai, Y.L.; Meyers, M.A. Shear Localization in Dynamic Deformation: Microstructural Evolution. Metall. Mater. Trans. A 2008, 39, 811–843. [Google Scholar] [CrossRef]
- Zhao, S.T.; Li, Z.Z.; Zhu, C.Y.; Yang, W.; Zhang, Z.R.; Armstrong, D.E.J.; Grant, P.S.; Ritchie, R.O.; Meyers, M.A. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy. Sci. Adv. 2021, 7, eabb3108. [Google Scholar] [CrossRef]
- Magagnosc, D.J.; Lloyd, J.T.; Meredith, C.S.; Pilchak, A.L.; Schuster, B.E. Incipient dynamic recrystallization and adiabatic shear bands in Ti-7Al studied via in situ X-ray diffraction. Int. J. Plast. 2021, 141, 102992. [Google Scholar] [CrossRef]
- Guan, X.R.; Chen, Q.; Qu, S.J.; Cao, G.J.; Wang, H.; Feng, A.H.; Chen, D.L. Adiabatic shear instability in a titanium alloy: Extreme deformation-induced phase transformation, nanotwinning, and grain refinement. J. Mater. Sci. Technol. 2023, 150, 104–113. [Google Scholar] [CrossRef]
- Yang, S.J.; Yang, Y. Thermodynamics-kinetics of twinning/martensitic transformation in Fe50Mn30Co10Cr10 high-entropy alloy during adiabatic shearing. Scr. Mater. 2020, 181, 115–120. [Google Scholar] [CrossRef]
- Timothy, S.P. The structure of adiabatic shear bands in metals: A critical review. Acta Metall. 1987, 35, 301–306. [Google Scholar] [CrossRef]
- Zhang, Z.; Eakins, D.E.; Dunne, F.P.E. On the formation of adiabatic shear bands in textured HCP polycrystals. Int. J. Plast. 2016, 79, 196–216. [Google Scholar] [CrossRef]
- Tresca, M.H. On further applications of the flow of solids. J. Frankl. Inst. 1878, 106, 396–404. [Google Scholar] [CrossRef]
- Zener, C.; Hollomon, J.H. Effect of Strain Rate Upon Plastic Flow of Steel. J. Appl. Phys. 1944, 15, 22–32. [Google Scholar] [CrossRef]
- Viswanathan, K.; Yadav, S.; Sagapuram, D. Shear Bands in Materials Processing: Understanding the Mechanics of Flow Localization from Zener’s Time to the Present. Appl. Mech. Rev. 2020, 72, 060802. [Google Scholar] [CrossRef]
- Liu, S.L.; Pan, Z.L.; Zhao, Y.H.; Topping, T.; Valiev, R.Z.; Liao, X.Z.; Lavernia, E.J.; Zhu, Y.T.; Wei, Q. Effect of strain rate on the mechanical properties of a gum metal with various microstructures. Acta Mater. 2017, 132, 193–208. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, J.H.; Zhu, L.; Chen, H.Y.; Li, Z.G.; Li, S.X.; Wang, D.; Wang, Y.G.; Kosiba, K. Dynamic compressive properties and underlying failure mechanisms of selective laser melted Ti-6Al-4V alloy under high temperature and strain rate conditions. Addit. Manuf. 2022, 54, 102772. [Google Scholar] [CrossRef]
- Zafari, A.; Xia, K. Grain refinement in a metastable beta Ti alloy deformed to large strains at high strain rates. Acta Mater. 2018, 157, 174–185. [Google Scholar] [CrossRef]
- Choisez, L.; Ding, L.; Marteleur, M.; Kashiwar, A.; Idrissi, H.; Jacques, P.J. Shear banding-activated dynamic recrystallization and phase transformation during quasi-static loading of β-metastable Ti-12 wt% Mo alloy. Acta Mater. 2022, 235, 118088. [Google Scholar] [CrossRef]
- Choisez, L.; Roy, G.; Jacques, P.J. Temperature rise up to melting under quasi-static loading conditions induced by adiabatic shear banding. Mater. Des. 2021, 212, 110269. [Google Scholar] [CrossRef]
- Choisez, L.; Ding, L.; Marteleur, M.; Idrissi, H.; Pardoen, T.; Jacques, P.J. High temperature rise dominated cracking mechanisms in ultra-ductile and tough titanium alloy. Nat. Commun. 2020, 11, 2110. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.Z.; Ruan, Q.C.; Zhu, S.X.; Wei, Q.; Chen, H.S.; Lu, J.; Hu, B.; Wu, X.H.; Li, Y.L.; Fang, D.N. Temperature Rise Associated with Adiabatic Shear Band: Causality Clarified. Phys. Rev. Lett. 2019, 122, 015503. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.X.; Guo, Y.Z.; Ruan, Q.C.; Chen, H.S.; Li, Y.L.; Fang, D.N. Formation of adiabatic shear band within Ti-6Al-4V: An in-situ study with high-speed photography and temperature measurement. Int. J. Mech. Sci. 2020, 171, 105401. [Google Scholar] [CrossRef]
- Guan, X.; Liu, D.; Qu, S.; Cao, G.; Wang, H.; Feng, A.; Chen, D. Multiple Deformation Mechanisms in Adiabatic Shear Bands of a Titanium Alloy during High Strain Rate Deformation. Materials 2024, 17, 3645. [Google Scholar] [CrossRef]
- Chen, H.-H.; Zhang, X.-F.; Dai, L.-H.; Liu, C.; Xiong, W.; Tan, M.-T. Experimental study on WFeNiMo high-entropy alloy projectile penetrating semi-infinite steel target. Def. Technol. 2021, 18, 1470–1482. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, L.; Huang, Y.; Chen, B.; Fan, P.; Liu, W.; Ma, Y. Effect of rotary swaging on microstructure evolution and adiabatic shear sensitivity of 90W–7Ni–3Fe alloy under dynamic loading. Mater. Sci. Eng. A 2022, 860, 144333. [Google Scholar] [CrossRef]
- Li, T.; Liu, T.; Zhao, S.; Chen, Y.; Luan, J.; Jiao, Z.; Ritchie, R.O.; Dai, L. Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations. Nat. Commun. 2023, 14, 3006. [Google Scholar] [CrossRef]
- Liu, X.F.; Tian, Z.L.; Zhang, X.F.; Chen, H.H.; Liu, T.W.; Chen, Y.; Wang, Y.J.; Dai, L.H. “Self-sharpening” tungsten high-entropy alloy. Acta Mater. 2020, 186, 257–266. [Google Scholar] [CrossRef]
- Liu, J.; Fan, Q.; Cai, H.; Wang, F. Underlying mechanism of periodical adiabatic shear bands generated in Ti–6Al–4V target by projectile impact. Mater. Des. 2015, 87, 231–237. [Google Scholar] [CrossRef]
- Nesterenko, V.F.; Meyers, M.A.; LaSalvia, J.C.; Bondar, M.P.; Chen, Y.J.; Lukyanov, Y.L. Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum. Mater. Sci. Eng. A 1997, 229, 23–41. [Google Scholar] [CrossRef]
- Yang, Y.; Lian, X.; Wang, J. Effect of strain rate on self-organisation of adiabatic shear bands in steel. Mater. Sci. Technol. 2020, 36, 556–563. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Z.L.; Cui, Y.N.; Ye, X.; Liu, X.M.; Tian, R.; Zhuang, Z. A thermo-elastic-plastic phase-field model for simulating the evolution and transition of adiabatic shear band. Part II. Dynamic collapse of thick-walled cylinder. Eng. Fract. Mech. 2020, 231, 107027. [Google Scholar] [CrossRef]
- Escaich, C.; Shi, Z.; Baron, L.; Balazinski, M. Machining of Titanium Metal Matrix Composites: Progress Overview. Materials 2020, 13, 5011. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Wang, M. A review of microstructural evolution in the adiabatic shear bands induced by high speed machining. Acta Metall. Sin. 2013, 26, 97–112. [Google Scholar] [CrossRef]
- Zhang, J.; He, B.; Zhang, B. Failure mode change and material damage with varied machining speeds: A review. Int. J. Extrem. Manuf. 2023, 5, 022003. [Google Scholar] [CrossRef]
- Duan, C.Z.; Zhang, L.C. Adiabatic shear banding in AISI 1045 steel during high speed machining: Mechanisms of microstructural evolution. Mater. Sci. Eng. A 2012, 532, 111–119. [Google Scholar] [CrossRef]
- Sun, J.L.; Trimby, P.W.; Yan, F.K.; Liao, X.Z.; Tao, N.R.; Wang, J.T. Shear banding in commercial pure titanium deformed by dynamic compression. Acta Mater. 2014, 79, 47–58. [Google Scholar] [CrossRef]
- Johnson, G.R.; Hoegfeldt, J.M.; Lindholm, U.S.; Nagy, A. Response of Various Metals to Large Torsional Strains over a Large Range of Strain Rates—Part 1: Ductile Metals. J. Eng. Mater. Technol. 1983, 105, 42–47. [Google Scholar] [CrossRef]
- Dogan, E.; Vaughan, M.W.; Wang, S.J.; Karaman, I.; Proust, G. Role of starting texture and deformation modes on low-temperature shear formability and shear localization of Mg–3Al–1Zn alloy. Acta Mater. 2015, 89, 408–422. [Google Scholar] [CrossRef]
- Cao, Y.; Ni, S.; Liao, X.; Song, M.; Zhu, Y. Structural evolutions of metallic materials processed by severe plastic deformation. Mater. Sci. Eng. R Rep. 2018, 133, 1–59. [Google Scholar] [CrossRef]
- Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 2014, 60, 130–207. [Google Scholar] [CrossRef]
- Burns, T.J.; Davies, M.A. On repeated adiabatic shear band formation during high-speed machining. Int. J. Plast. 2002, 18, 487–506. [Google Scholar] [CrossRef]
- Yang, X.X.; Zhang, B. Material embrittlement in high strain-rate loading. Int. J. Extrem. Manuf. 2019, 1, 022003. [Google Scholar] [CrossRef]
- Ye, G.G.; Xue, S.F.; Jiang, M.Q.; Tong, X.H.; Dai, L.H. Modeling periodic adiabatic shear band evolution during high speed machining Ti-6Al-4V alloy. Int. J. Plast. 2013, 40, 39–55. [Google Scholar] [CrossRef]
- Zhang, B.; Yin, J. The ‘skin effect’ of subsurface damage distribution in materials subjected to high-speed machining. Int. J. Extrem. Manuf. 2019, 1, 012007. [Google Scholar] [CrossRef]
- Liu, L.; Shao, H.; Zhu, X.; Zhao, Z.; Zhang, G.; Luo, G.; Chen, W. Bird impact response and damage mechanism of 3D orthogonal woven composite aeroengine blades. Compos. Struct. 2023, 304, 116311. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, X.; Huo, J. Impact of a bird strike on the aerodynamic performance and damage behavior of a full-scale aeroengine fan. Aerosp. Sci. Technol. 2024, 151, 109270. [Google Scholar] [CrossRef]
- Yu, S.; Yuan, J.; Yang, Z.; Zhang, H. Strengthening mechanisms and microstructural evolution of medium manganese steel under dynamic and static loading. Materialia 2023, 32, 101954. [Google Scholar] [CrossRef]
- Mohapatra, S.; Poojari, G.; Das, S.; Das, K. Insights into the dynamic impact behavior of intercritically annealed automotive-grade Fe–7Mn–4Al−0.18C steel. Mater. Sci. Eng. A 2023, 887, 145769. [Google Scholar] [CrossRef]
- Yuan, F.; Bian, X.; Jiang, P.; Yang, M.; Wu, X. Dynamic shear response and evolution mechanisms of adiabatic shear band in an ultrafine-grained austenite–ferrite duplex steel. Mech. Mater. 2015, 89, 47–58. [Google Scholar] [CrossRef]
- Verleysen, P. Dynamic behavior of high-strength steels for automotive applications. In Dynamic Behavior of Materials; Elsevier: Amsterdam, The Netherlands, 2024; pp. 295–337. [Google Scholar] [CrossRef]
- Horvath, C.D. Advanced steels for lightweight automotive structures. In Materials, Design and Manufacturing for Lightweight Vehicles; Woodhead Publishing: Cambridge, UK, 2021; pp. 39–95. [Google Scholar] [CrossRef]
- Zhang, X.P.; Shivpuri, R.; Srivastava, A.K. Role of phase transformation in chip segmentation during high speed machining of dual phase titanium alloys. J. Mater. Process. Technol. 2014, 214, 3048–3066. [Google Scholar] [CrossRef]
- Zou, D.L.; Zhen, L.; Xu, C.Y.; Shao, W.Z. Characterization of adiabatic shear bands in AM60B magnesium alloy under ballistic impact. Mater. Charact. 2011, 62, 496–502. [Google Scholar] [CrossRef]
- Williams, J.C.; Boyer, R.R. Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components. Metals 2020, 10, 705. [Google Scholar] [CrossRef]
- Wu, B.; Lin, J.; Xie, A.; Wang, N.; Zhang, G.; Zhang, J.; Dai, H. Flocking Bird Strikes on Engine Fan Blades and Their Effect on Rotor System: A Numerical Simulation. Aerospace 2022, 9, 90. [Google Scholar] [CrossRef]
- Landau, P.; Osovski, S.; Venkert, A.; Gartnerova, V.; Rittel, D. The genesis of adiabatic shear bands. Sci. Rep. 2016, 6, 37226. [Google Scholar] [CrossRef]
- Tang, L.; Chen, Z.Y.; Zhan, C.K.; Yang, X.Y.; Liu, C.M.; Cai, H.N. Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization. Mater. Charact. 2012, 64, 21–26. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zeng, W.D.; Sun, X.; Xu, J.W. The microstructure characterization of adiabatic shearing band in Ti-17 alloy at high strain rates and elevated temperatures. Mater. Sci. Eng. A 2016, 677, 325–331. [Google Scholar] [CrossRef]
- Li, Z.Z.; Zhao, S.T.; Alotaibi, S.M.; Liu, Y.; Wang, B.F.; Meyers, M.A. Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2018, 151, 424–431. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, L. Self-organization of adiabatic shear bands in ZK60 Magnesium alloy. Mater. Sci. Eng. A 2016, 655, 321–330. [Google Scholar] [CrossRef]
- Altenaiji, M.; Guan, Z.W.; Cantwell, W.J.; Zhao, Y.; Schleyer, G.K. Characterisation of aluminium matrix syntactic foams under drop weight impact. Mater. Des. 2014, 59, 296–302. [Google Scholar] [CrossRef]
- Zhang, X.X.; Ruiz, G.; Yu, R.C. A New Drop-Weight Impact Machine for Studying Fracture Processes in Structural Concrete. Strain 2010, 46, 252–257. [Google Scholar] [CrossRef]
- Zhao, S.T.; Kad, B.; Remington, B.A.; LaSalvia, J.C.; Wehrenberg, C.E.; Behler, K.D.; Meyers, M.A. Directional amorphization of boron carbide subjected to laser shock compression. Proc. Natl. Acad. Sci. USA 2016, 113, 12088–12093. [Google Scholar] [CrossRef]
- Hwang, H.; Galtier, E.; Cynn, H.; Eom, I.; Chun, S.H.; Bang, Y.; Hwang, G.C.; Choi, J.; Kim, T.; Kong, M.; et al. Subnanosecond phase transition dynamics in laser-shocked iron. Sci. Adv. 2020, 6, eaaz5132. [Google Scholar] [CrossRef]
- Remington, T.P.; Hahn, E.N.; Zhao, S.; Flanagan, R.; Mertens, J.C.E.; Sabbaghianrad, S.; Langdon, T.G.; Wehrenberg, C.E.; Maddox, B.R.; Swift, D.C.; et al. Spall strength dependence on grain size and strain rate in tantalum. Acta Mater. 2018, 158, 313–329. [Google Scholar] [CrossRef]
- Xia, K.; Yao, W. Dynamic rock tests using split Hopkinson (Kolsky) bar system—A review. J. Rock Mech. Geotech. Eng. 2015, 7, 27–59. [Google Scholar] [CrossRef]
- Shockey, D.A.; Erlich, D.C. Metallurgical Influences on Shear Band Activity. In Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications; Meyers, M.A., Murr, L.E., Eds.; Springer US: Boston, MA, USA, 1981; pp. 249–261. [Google Scholar] [CrossRef]
- Lu, C.H.; Remington, B.A.; Maddox, B.R.; Kad, B.; Park, H.S.; Prisbrey, S.T.; Meyers, M.A. Laser compression of monocrystalline tantalum. Acta Mater. 2012, 60, 6601–6620. [Google Scholar] [CrossRef]
- Dou, Q.B.; Wu, K.R.; Suo, T.; Zhang, C.; Guo, X.; Guo, Y.Z.; Guo, W.G.; Li, Y.L. Experimental methods for determination of mechanical behaviors of materials at high temperatures via the split Hopkinson bars. Acta Mech. Sin. 2020, 36, 1275–1293. [Google Scholar] [CrossRef]
- Sudheera; Rammohan, Y.S.; Pradeep, M.S. Split Hopkinson Pressure Bar Apparatus for Compression Testing: A Review. Mater. Today Proc. 2018, 5, 2824–2829. [Google Scholar] [CrossRef]
- Gray, G.T.R., III. High-Strain-Rate Testing of Materials: The Split-Hopkinson Pressure Bar. In Characterization of Materials; Kaufmann, E.N., Ed.; Wiley: New Mexico, NM, USA, 2012; pp. 288–301. [Google Scholar]
- Hudspeth, M.; Claus, B.; Dubelman, S.; Black, J.; Mondal, A.; Parab, N.; Funnell, C.; Hai, F.; Qi, M.L.; Fezzaa, K.; et al. High speed synchrotron X-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading. Rev. Sci. Instrum. 2013, 84, 025102. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Claus, B.; Gao, J.; Zhai, X.; Kedir, N.; Chu, J.; Sun, T.; Fezzaa, K.; Chen, W.W. In Situ Observation of Adiabatic Shear Band Formation in Aluminum Alloys. Exp. Mech. 2019, 60, 153–163. [Google Scholar] [CrossRef]
- Ran, C.; Chen, P.W.; Li, L.; Zhang, W.F. Dynamic shear deformation and failure of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy. Mater. Sci. Eng. A 2017, 694, 41–47. [Google Scholar] [CrossRef]
- Pai, A.; Rodriguez-Millan, M.; Beppu, M.; Valverde-Marcos, B.; Shenoy, S.B. Experimental techniques for performance evaluation of shielding materials and configurations subjected to Blast and Ballistic impacts: A State-of-the-Art Review. Thin-Walled Struct. 2023, 191, 111067. [Google Scholar] [CrossRef]
- Sukumar, G.; Singh, B.B.; Bhattacharjee, A.; Kumar, K.S.; Gogia, A.K. Ballistic impact behaviour of β-CEZ Ti alloy against 7.62 mm armour piercing projectiles. Int. J. Impact Eng. 2013, 54, 149–160. [Google Scholar] [CrossRef]
- Abtew, M.A.; Boussu, F.; Bruniaux, P.; Loghin, C.; Cristian, I. Ballistic impact mechanisms—A review on textiles and fibre-reinforced composites impact responses. Compos. Struct. 2019, 223, 110966. [Google Scholar] [CrossRef]
- Naik, S.; Dandagwhal, R.D.; Kumar Loharkar, P. A review on various aspects of Kevlar composites used in ballistic applications. Mater. Today Proc. 2020, 21, 1366–1374. [Google Scholar] [CrossRef]
- Idrici, D.; Goroshin, S.; Soo, M.J.; Frost, D.L. Light emission signatures from ballistic impact of reactive metal projectiles. Int. J. Impact Eng. 2021, 150, 103814. [Google Scholar] [CrossRef]
- Elgy, I.D.; Clarke, S.D.; Fuller, B.J.; Barr, A.D.; Armstrong, D.W.; Gant, M.T.A.; Keirl, J.J.; Porter, G.C.E.; Softly, I.D.; Tyas, A. Deformation of Armox 440T plates subject to buried explosive charge detonations: A benchmark for appliqué systems. Int. J. Impact Eng. 2021, 150, 103819. [Google Scholar] [CrossRef]
- Artero-Guerrero, J.A.; Pernas-Sánchez, J.; Martín-Montal, J.; Varas, D.; López-Puente, J. The influence of laminate stacking sequence on ballistic limit using a combined Experimental/FEM/Artificial Neural Networks (ANN) methodology. Compos. Struct. 2018, 183, 299–308. [Google Scholar] [CrossRef]
- Remington, T.P.; Remington, B.A.; Hahn, E.N.; Meyers, M.A. Deformation and failure in extreme regimes by high-energy pulsed lasers: A review. Mater. Sci. Eng. A 2017, 688, 429–458. [Google Scholar] [CrossRef]
- Zhao, S.; Flanagan, R.; Hahn, E.N.; Kad, B.; Remington, B.A.; Wehrenberg, C.E.; Cauble, R.; More, K.; Meyers, M.A. Shock-induced amorphization in silicon carbide. Acta Mater. 2018, 158, 206–213. [Google Scholar] [CrossRef]
- Zhao, S.; Kad, B.; Wehrenberg, C.E.; Remington, B.A.; Hahn, E.N.; More, K.L.; Meyers, M.A. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization. Proc. Natl. Acad. Sci. USA 2017, 114, 9791–9796. [Google Scholar] [CrossRef]
- Zhao, S.; Li, B.; Remington, B.A.; Wehrenberg, C.E.; Park, H.S.; Hahn, E.N.; Meyers, M.A. Directional amorphization of covalently-bonded solids: A generalized deformation mechanism in extreme loading. Mater. Today 2021, 49, 59–67. [Google Scholar] [CrossRef]
- Gao, P.; Ma, Z.; Gu, J.; Ni, S.; Suo, T.; Li, Y.; Song, M.; Mai, Y.-W.; Liao, X. Exceptional high-strain-rate tensile mechanical properties in a CrCoNi medium-entropy alloy. Sci. China Mater. 2021, 65, 811–819. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Pellegrino, A.; Petrinic, N. Dynamic necking of a near titanium alloy at high strain rates: Experiments and modelling. Def. Technol. 2021, 17, 1126–1134. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; Fan, D.; Lu, L.; Zhang, B.; Zhong, T.; Dai, B.; Zhang, S.; Tao, Y.; Zhang, Y.; et al. Deformation twinning in single-crystal Mg under high strain rate tensile loading: A time-resolved X-ray diffraction study. Int. J. Mech. Sci. 2022, 220, 107106. [Google Scholar] [CrossRef]
- Qiao, Y.; Chen, Y.; Cao, F.-H.; Wang, H.-Y.; Dai, L.-H. Dynamic behavior of CrMnFeCoNi high-entropy alloy in impact tension. Int. J. Impact Eng. 2021, 158, 104008. [Google Scholar] [CrossRef]
- Hu, K.; Li, X.; Liu, B.; Guan, M.; Qu, S.; Han, S. Dynamic mechanical behavior of 93W–4.9Ni–2.1Fe/95W–2.8Ni–1.2Fe–1Al2O3 heavy alloy composite. Mater. Sci. Eng. A 2018, 729, 349–356. [Google Scholar] [CrossRef]
- Qiao, Y.; Cao, F.-H.; Chen, Y.; Wang, H.-Y.; Dai, L.-H. Impact tension behavior of heavy-drawn nanocrystalline CoCrNi medium entropy alloy wire. Mater. Sci. Eng. A 2022, 856, 144041. [Google Scholar] [CrossRef]
- Ranc, N.; Taravella, L.; Pina, V.; Herve, P. Temperature field measurement in titanium alloy during high strain rate loading—Adiabatic shear bands phenomenon. Mech. Mater. 2008, 40, 255–270. [Google Scholar] [CrossRef]
- Miyambo, M.E.; Von Kallon, D.V.; Pandelani, T.; Reinecke, J.D. Review of the development of the split Hopkinson pressure bar. Procedia CIRP 2023, 119, 800–808. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z.; Ma, W. Experimental Study on the High Temperature Impact Torsional Behavior of Ti-1023 Alloy. Materials 2022, 15, 3847. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Q.; Xu, Y.F.; Guo, S.H.; Li, C.; Zhang, N.B.; Cai, Y.; Liu, X.Y.; Lu, L.; Luo, S.N. Taylor impact of high-entropy alloy Al0.1CoCrFeNi: Dynamic severe plastic deformation and bulk gradient structure. J. Alloys Compd. 2023, 936, 168261. [Google Scholar] [CrossRef]
- Rodionov, E.S.; Lupanov, V.G.; Gracheva, N.A.; Mayer, P.N.; Mayer, A.E. Taylor Impact Tests with Copper Cylinders: Experiments, Microstructural Analysis and 3D SPH Modeling with Dislocation Plasticity and MD-Informed Artificial Neural Network as Equation of State. Metals 2022, 12, 264. [Google Scholar] [CrossRef]
- Iannitti, G.; Bonora, N.; Testa, G.; Ruggiero, A. High-rate characterization of additively manufactured Ti-6Al-4V using Taylor cylinder impact test: Experiments. Mater. Des. Process. Commun. 2020, 3, e192. [Google Scholar] [CrossRef]
- Plunkett, B.; Cazacu, O.; Lebensohn, R.A.; Barlat, F. Elastic-viscoplastic anisotropic modeling of textured metals and validation using the Taylor cylinder impact test. Int. J. Plast. 2007, 23, 1001–1021. [Google Scholar] [CrossRef]
- Gray, G.T.; Livescu, V.; Rigg, P.A.; Trujillo, C.P.; Cady, C.M.; Chen, S.R.; Carpenter, J.S.; Lienert, T.J.; Fensin, S.J. Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel. Acta Mater. 2017, 138, 140–149. [Google Scholar] [CrossRef]
- Jo, M.C.; Kim, S.; Kim, D.W.; Park, H.K.; Hong, S.S.; Kim, H.K.; Kim, H.S.; Sohn, S.S.; Lee, S. Understanding of adiabatic shear band evolution during high-strain-rate deformation in high-strength armor steel. J. Alloys Compd. 2020, 845, 155540. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Meyers, M.A.; Nesterenko, V.F. Spontaneous and forced shear localization in high-strain-rate deformation of tantalum. Mater. Sci. Eng. A 1999, 268, 70–82. [Google Scholar] [CrossRef]
- Kim, S.; Jo, M.C.; Suh, D.W.; Kim, H.K.; Sohn, S.S.; Lee, S. Suppression of adiabatic shear band formation by martensitic transformation of retained austenite during split Hopkinson pressure bar test for a high-strength bainitic steel. Mater. Sci. Eng. A 2021, 814, 141127. [Google Scholar] [CrossRef]
- Chen, J.; Bao, K.; Zhang, X.; Cao, Y.; Peng, Y.; Kong, J.; Wang, K. Adiabatic shear band development and following failure in 316L fabricated by an additive manufacturing process. Mater. Sci. Eng. A 2021, 811, 141003. [Google Scholar] [CrossRef]
- Meyer, L.W.; Staskewitsch, E.; Burblies, A. Adiabatic Shear Failure Under Biaxial Dynamic Compression/Shear Loading. Mech. Mater. 1994, 17, 203–214. [Google Scholar] [CrossRef]
- Hartmann, K.H.; Kunze, H.D.; Meyer, L.W. Metallurgical Effects on Impact Loaded Materials. In Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications; Meyers, M.A., Murr, L.E., Eds.; Springer: Boston, MA, USA, 1981; pp. 325–337. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Deng, C.; Liu, S.F.; Liu, Y.H.; Zhu, J.L.; Yuan, X.L. Microstructure, texture, and fracture of pure magnesium adiabatic shear band under high strain rate compression. Mater. Sci. Eng. A 2021, 822, 141632. [Google Scholar] [CrossRef]
- Wang, B.; Ma, R.; Zhou, J.; Li, Z.; Zhao, S.; Huang, X. Adiabatic shear localization in ultrafine grained 6061 aluminum alloy. Mater. Sci. Eng. A 2016, 675, 221–227. [Google Scholar] [CrossRef]
- Long, B.Z.; Zhang, Y.; Guo, C.H.; Cui, Y.; Sun, L.X.; Chen, D.; Jiang, F.C.; Zhao, T.; Zhao, G.; Zhang, Z.W. Enhanced dynamic mechanical properties and resistance to the formation of adiabatic shear band by Cu-rich nano-precipitates in high-strength steels. Int. J. Plast. 2021, 138, 102924. [Google Scholar] [CrossRef]
- Lins, J.F.C.; Sandim, H.R.Z.; Kestenbach, H.J.; Raabe, D.; Vecchio, K.S. A microstructural investigation of adiabatic shear bands in an interstitial free steel. Mater. Sci. Eng. A 2007, 457, 205–218. [Google Scholar] [CrossRef]
- Wang, B.F.; Yang, Y. Microstructure evolution in adiabatic shear band in fine-grain-sized Ti–3Al–5Mo–4.5V alloy. Mater. Sci. Eng. A 2008, 473, 306–311. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, F.; Zhou, B.M.; Li, X.M.; Zheng, H.G.; Zhang, Q.M. Microstructural characterization and evolution mechanism of adiabatic shear band in a near beta-Ti alloy. Mater. Sci. Eng. A 2011, 528, 2787–2794. [Google Scholar] [CrossRef]
- Wang, B.F.; Sun, J.Y.; Wang, X.Y.; Fu, A. Adiabatic shear localization in a near beta Ti-5Al-5Mo-5V-1Cr-1Fe alloy. Mater. Sci. Eng. A 2015, 639, 526–533. [Google Scholar] [CrossRef]
- Peirs, J.; Tirry, W.; Amin-Ahmadi, B.; Coghe, F.; Verleysen, P.; Rabet, L.; Schryvers, D.; Degrieck, J. Microstructure of adiabatic shear bands in Ti6Al4V. Mater. Charact. 2013, 75, 79–92. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Chen, Z.Y.; Zhan, C.K.; Chen, T.; Wang, R.K.; Liu, C.M. Adiabatic shear localization in pure titanium deformed by dynamic loading: Microstructure and microtexture characteristic. Mater. Sci. Eng. A 2015, 640, 436–442. [Google Scholar] [CrossRef]
- Minnaar, K.; Zhou, M. An analysis of the dynamic shear failure resistance of structural metals. J. Mech. Phys. Solids 1998, 46, 2155–2170. [Google Scholar] [CrossRef]
- Song, W.-D.; Hu, M.-L.; Zhang, H.-S.; Jin, Y.-X. Effects of different heat treatments on the dynamic shear response and shear localization in Inconel 718 alloy. Mater. Sci. Eng. A 2018, 725, 76–87. [Google Scholar] [CrossRef]
- Clos, R.; Schreppel, U.; Veit, P. Temperature, microstructure and mechanical response during shear-band formation in different metallic materials. J. Phys. IV Arch. 2003, 110, 111–116. [Google Scholar] [CrossRef]
- Zeng, Q.; Chen, M.; Yu, X.; Qi, W.; Zhu, S.; Yang, H.; Chen, H.-S. Two-dimensional evolution of temperature and deformation fields during dynamic shear banding: In-situ experiments and modeling. Int. J. Plast. 2023, 171, 103782. [Google Scholar] [CrossRef]
- Landau, P.; Venkert, A.; Rittel, D. Microstructural Aspects of Adiabatic Shear Failure in Annealed Ti6Al4V. Metall. Mater. Trans. A 2009, 41, 389–396. [Google Scholar] [CrossRef]
- Zhang, L.H.; Rittel, D.; Osovski, S. Thermo-mechanical characterization and dynamic failure of near α and near β titanium alloys. Mater. Sci. Eng. A 2018, 729, 94–101. [Google Scholar] [CrossRef]
- An, W.; Liu, C.-Z.; Xiong, Q.-L.; Li, Z.; Huang, X.; Suo, T. Shear localization in polycrystalline metal at high-strain rates with dynamic recrystallization: Crystal plasticity modeling and texture effect. Int. J. Plast. 2023, 165, 103616. [Google Scholar] [CrossRef]
- Nguyen, T.; Fensin, S.J.; Luscher, D.J. Dynamic crystal plasticity modeling of single crystal tantalum and validation using Taylor cylinder impact tests. Int. J. Plast. 2021, 139, 102940. [Google Scholar] [CrossRef]
- Bronkhorst, C.A.; Cerreta, E.K.; Xue, Q.; Maudlin, P.J.; Mason, T.A.; Gray, G.T., III. An experimental and numerical study of the localization behavior of tantalum and stainless steel. Int. J. Plast. 2006, 22, 1304–1335. [Google Scholar] [CrossRef]
- Vishnu, A.R.; Marvi-Mashhadi, M.; Nieto-Fuentes, J.C.; Rodríguez-Martínez, J.A. New insights into the role of porous microstructure on dynamic shear localization. Int. J. Plast. 2022, 148, 103150. [Google Scholar] [CrossRef]
- Cerreta, E.K.; Bingert, J.F.; Gray, G.T.; Trujillo, C.P.; Lopez, M.F.; Bronkhorst, C.A.; Hansen, B.L. Microstructural examination of quasi-static and dynamic shear in high-purity iron. Int. J. Plast. 2013, 40, 23–38. [Google Scholar] [CrossRef]
- Jiang, K.; Zhang, Q.; Li, J.G.; Li, X.Y.; Zhao, F.; Hou, B.; Suo, T. Abnormal hardening and amorphization in an FCC high entropy alloy under extreme uniaxial tension. Int. J. Plast. 2022, 159, 103463. [Google Scholar] [CrossRef]
- Guan, Y.; Song, W.; Wang, Y.; Liu, S.; Yu, Y. Dynamic responses in shocked Cu-Zr nanoglasses with gradient microstructure. Int. J. Plast. 2022, 149, 103154. [Google Scholar] [CrossRef]
- Wang, S.J.; Wang, H.; Du, K.; Zhang, W.; Sui, M.L.; Mao, S.X. Deformation-induced structural transition in body-centred cubic molybdenum. Nat. Commun. 2014, 5, 3433. [Google Scholar] [CrossRef]
- Wang, H.; Bao, Q.L.; Zhou, G.; Qiu, J.K.; Yang, Y.; Ma, Y.J.; Bai, C.G.; Xu, D.S.; Rugg, D.; Huang, A.J.; et al. Dynamic recrystallization initiated by direct grain reorientation at high-angle grain boundary in α-titanium. J. Mater. Res. 2019, 34, 1608–1621. [Google Scholar] [CrossRef]
- Recht, R.F. Catastrophic thermoplastic shear. J. Appl. Mech. 1964, 31, 189–193. [Google Scholar] [CrossRef]
- Giovanola, J.H. Adiabatic shear banding under pure shear loading Part I: Direct observation of strain localization and energy dissipation measurements. Mech. Mater. 1988, 7, 59–71. [Google Scholar] [CrossRef]
- Xu, Y.B.; Bai, Y.L.; Xue, Q.; Shen, L.T. Formation, microstructure and development of the localized shear deformation in low-carbon steels. Acta Mater. 1996, 44, 1917–1926. [Google Scholar] [CrossRef]
- Bai, Y.; Xuc, Q.; Xu, Y.; Shen, L. Characteristics and microstructure in the evolution of shear localization in Ti-6A1-4V alloy. Mech. Mater. 1994, 17, 155–164. [Google Scholar] [CrossRef]
- Rittel, D.; Landau, P.; Venkert, A. Dynamic recrystallization as a potential cause for adiabatic shear failure. Phys. Rev. Lett. 2008, 101, 165501. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Li, J.G.; Kan, X.K.; Zhao, F.; Hou, B.; Wei, Q.M.; Suo, T. Adiabatic shear localization induced by dynamic recrystallization in an FCC high entropy alloy. Int. J. Plast. 2023, 162, 103550. [Google Scholar] [CrossRef]
- Andrade, U.; Meyers, M.A.; Vecchio, K.S.; Chokshi, A.H. Dynamic Recrystallization in High-strain, High-Strain-rate Plastic Deformation of Copper. Acta Metall. Mater. 1994, 42, 3183–3195. [Google Scholar] [CrossRef]
- Rittel, D.; Wang, Z.G.; Merzer, M. Adiabatic Shear Failure and Dynamic Stored Energy of Cold Work. Phys. Rev. Lett. 2006, 96, 075502. [Google Scholar] [CrossRef]
- Cowie, J.G.; Azrin, M.; Olson, G.B. Microvoid formation during shear deformation of ultrahigh strength steels. Metall. Trans. A 1989, 20, 143–153. [Google Scholar] [CrossRef]
- Meyers, M.A.; Xu, Y.B.; Xue, Q.; Pérez-Prado, M.T.; McNelley, T.R. Microstructural evolution in adiabatic shear localization in stainless steel. Acta Mater. 2003, 51, 1307–1325. [Google Scholar] [CrossRef]
- Zou, D.L.; Luan, B.F.; Liu, Q.; Chai, L.J.; Chen, J.W. Characterization of adiabatic shear bands in the zirconium alloy impacted by split Hopkinson pressure bar at a strain rate of 6000s-1. Mater. Sci. Eng. A 2012, 558, 517–524. [Google Scholar] [CrossRef]
- Kad, B.K.; Gebert, J.M.; Pérez-Prado, M.T.; Kassner, M.E.; Meyers, M.A. Ultrafine-grain-sized zirconium by dynamic deformation. Acta Mater. 2006, 54, 4111–4127. [Google Scholar] [CrossRef]
- Li, Z.Z.; Wang, B.F.; Zhao, S.T.; Valiev, R.Z.; Vecchio, K.S.; Meyers, M.A. Dynamic deformation and failure of ultrafine-grained titanium. Acta Mater. 2017, 125, 210–218. [Google Scholar] [CrossRef]
- Martinez, F.; Murr, L.E.; Ramirez, A.; Lopez, M.I.; Gaytan, S.M. Dynamic deformation and adiabatic shear microstructures associated with ballistic plug formation and fracture in Ti-6Al-4V targets. Mater. Sci. Eng. A 2007, 454, 581–589. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Z.; Wang, R.; Liu, C. Forced shear deformation behaviors of annealed pure titanium under quasi-static and dynamic loading. Mater. Sci. Eng. A 2022, 839, 142872. [Google Scholar] [CrossRef]
- Pérez-Prado, M.T.; Hines, J.A.; Vecchio, K.S. Microstructural evolution in adiabatic shear bands in Ta and Ta-W alloys. Acta Mater. 2001, 49, 2905–2917. [Google Scholar] [CrossRef]
- Meyers, M.A.; Subhash, G.; Kad, B.K.; Prasad, L. Evolution of microstructure and shear-band formation in α-hcp titanium. Mech. Mater. 1994, 17, 175–193. [Google Scholar] [CrossRef]
- Meyers, M.A.; Pak, H.-R. Observation of an adiabatic shear band in titanium by high-voltage transmission electron microscopy. Acta Metall. 1986, 34, 2493–2499. [Google Scholar] [CrossRef]
- Meyers, M.A.; Nesterenko, V.F.; Lasalvia, J.C.; Xue, Q. Shear localization in dynamic deformation of materials: Microstructural evolution and self-organization. Mater. Sci. Eng. A 2001, 317, 204–225. [Google Scholar] [CrossRef]
- Fu, A.; Liu, B.; Li, Z.Z.; Wang, B.F.; Cao, Y.K.; Liu, Y. Dynamic deformation behavior of a FeCrNi medium entropy alloy. J. Mater. Sci. Technol. 2022, 100, 120–128. [Google Scholar] [CrossRef]
- Wang, B.F.; Wang, X.Y.; Li, Z.Z.; Ma, R.; Zhao, S.T.; Xie, F.Y.; Zhang, X.Y. Shear localization and microstructure in coarse grained beta titanium alloy. Mater. Sci. Eng. A 2016, 652, 287–295. [Google Scholar] [CrossRef]
- Jiang, K.; Yin, G.; Gao, H.; Tian, W. Influence of rapid heating and cooling combined with deformation at ultrahigh strain rates on the microstructure evolution of pure titanium shaped charge liner. Mater. Charact. 2018, 142, 211–218. [Google Scholar] [CrossRef]
- Zhan, H.; Zeng, W.; Wang, G.; Kent, D.; Dargusch, M. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures. Mater. Charact. 2015, 102, 103–113. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Zhan, C.; Kuang, L.; Shao, J.; Wang, R.; Liu, C. Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy. Mater. Sci. Eng. A 2017, 691, 51–59. [Google Scholar] [CrossRef]
- Kuang, L.; Chen, Z.; Jiang, Y.; Wang, Z.; Wang, R.; Liu, C. Adiabatic shear behaviors in rolled and annealed pure titanium subjected to dynamic impact loading. Mater. Sci. Eng. A 2017, 685, 95–106. [Google Scholar] [CrossRef]
- Liu, X.; Mao, P.; Zhou, L.; Wang, Z.; Liu, Z.; Wang, F. Microstructure evolution and characterization of the adiabatic shear bands in AZ31 magnesium alloy. Mater. Charact. 2023, 198, 112726. [Google Scholar] [CrossRef]
- Zhu, X.J.; Fan, Q.B.; Wang, D.D.; Gong, H.C.; Gao, Y.; Qian, F.; Jin, S.B.; Sha, G. A new dynamic recrystallization mechanism in adiabatic shear band of an α/β dual phase titanium alloy: Composition redistribution. Scr. Mater. 2022, 206, 114229. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, W.; Zhang, W.; Chen, Y.; Shan, D. Effect of power spinning and heat treatment on microstructure evolution and mechanical properties of duplex low-cost titanium alloy. J. Mater. Sci. Technol. 2023, 136, 121–139. [Google Scholar] [CrossRef]
- Yan, C.K.; Feng, A.H.; Qu, S.J.; Cao, G.J.; Sun, J.L.; Shen, J.; Chen, D.L. Dynamic recrystallization of titanium: Effect of pre-activated twinning at cryogenic temperature. Acta Mater. 2018, 154, 311–324. [Google Scholar] [CrossRef]
- Chen, K.; Fan, Q.B.; Yang, L.; Yao, J.H.; Xu, S.; Lei, W.; Gao, Y. Deciphering the microstructural evolution and adiabatic shearing behavior of the titanium alloy with stress-induced ω phase transformation during dynamic compression. Mater. Des. 2022, 221, 110939. [Google Scholar] [CrossRef]
- Ma, Y.; Yuan, F.P.; Yang, M.X.; Jiang, P.; Ma, E.; Wu, X.L. Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures. Acta Mater. 2018, 148, 407–418. [Google Scholar] [CrossRef]
- Wang, F.; Guo, J.; Weygand, D.; Wang, F.; Rupert, T.J.; Chen, D.; Gianola, D.S. Topology and evolution of dislocation structures mediated by glissile reactions in face-centered cubic metals. Acta Mater. 2024, 268, 119748. [Google Scholar] [CrossRef]
- Bajaj, D.; Chen, D.L. Uncovering all possible dislocation locks in face-centered cubic materials. Int. J. Plast. 2024, 181, 104101. [Google Scholar] [CrossRef]
- Meng, Z.C.; Yang, M.M.; Feng, A.H.; Qu, S.J.; Zhao, F.; Yang, L.; Yao, J.H.; Yang, Y.; Fan, Q.B.; Wang, H. Transfer or blockage: Unraveling the interaction between deformation twinning and grain boundary in tantalum under shock loading with molecular dynamics. J. Mater. Sci. Technol. 2023, 156, 118–128. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.D.; Lin Peng, R.; Sun, X.; Liaw, P.K.; Wu, G.L.; Wang, L.; Cai, H.N. Localized amorphism after high-strain-rate deformation in TWIP steel. Acta Mater. 2011, 59, 6369–6377. [Google Scholar] [CrossRef]
- Zaera, R.; Rodríguez-Martínez, J.A.; Rittel, D. On the Taylor-Quinney coefficient in dynamically phase transforming materials. Application to 304 stainless steel. Int. J. Plast. 2013, 40, 185–201. [Google Scholar] [CrossRef]
- Padilla, H.A.; Smith, C.D.; Lambros, J.; Beaudoin, A.J.; Robertson, I.M. Effects of Deformation Twinning on Energy Dissipation in High Rate Deformed Zirconium. Metall. Mater. Trans. A 2007, 38, 2916–2927. [Google Scholar] [CrossRef]
- Mason, J.J.; Rosakis, A.J.; Ravichandran, G. On the strain and strain rate dependence of the fraction of plastic work converted to heat: An experimental study using high speed infrared detectors and the Kolsky bar. Mech. Mater. 1994, 17, 135–145. [Google Scholar] [CrossRef]
- Kingstedt, O.T.; Lloyd, J.T. On the conversion of plastic work to heat in Mg alloy AZ31B for dislocation slip and twinning deformation. Mech. Mater. 2019, 134, 176–184. [Google Scholar] [CrossRef]
- Rittel, D.; Zhang, L.H.; Osovski, S. The dependence of the Taylor-Quinney coefficient on the dynamic loading mode. J. Mech. Phys. Solids 2017, 107, 96–114. [Google Scholar] [CrossRef]
- Xiong, Q.L.; Li, Z.H.; Shimada, T.; Kitamura, T. Atomistic investigation on the conversion of plastic work to heat in high-rate shear deformation. Int. J. Plast. 2022, 149, 103158. [Google Scholar] [CrossRef]
Constant and Variable | Meaning | Value |
---|---|---|
L | Average subgrain diameter | - |
k | Boltzmann’s constant | 1.38 × 10−23 J·K−1 |
T | Absolute temperature | - |
δ | Grain boundary thickness | - |
η | Grain boundary energy | - |
Dbo | Constant related to grain boundary diffusion | - |
Q | Activation energy for grain boundary diffusion | - |
θ | Subgrain misorientation | 0–30° |
R | Gas constant | 8.314 J·mol−1·K−1 |
Materials | Initial Grain Size | Grain Size in ASB | Estimated Temperature | Reference |
---|---|---|---|---|
Pure Ti | 20 μm | 0.1–1 μm | 930 K (0.48 Tm) | [117] |
Ultrafine-grained pure Ti | 120 nm | 40 nm | 900 K (0.46 Tm) | [145] |
CrMnFeCoNi high-entropy alloy | 8 μm | 100–300 nm | 700 K (0.40 Tm) | [62] |
Pure Ti | 80 μm | 6 μm | 1400–1600 K (0.72–0.82 Tm) | [154] |
Ti-5Al-5Mo-5V-1Cr-1Fe alloy | - | 50–200 nm | 1132 K (0.62 Tm) | [115] |
Ti-6Cr-5Mo-5V-4Al alloy | 150 μm | 100–300 nm | 873–967 K (0.45–0.50 Tm) | [155] |
Pure zirconium (Zircadine 702) | 7.5 μm | 200 nm | 930 K (0.43 Tm) | [144] |
Ti-5Mo-5V-8Cr-3Al alloy | - | 250 nm | 940 K (0.50 Tm) | [156] |
Pure Ti | 24 μm | 0.1–1 μm | 900 K (0.46 Tm) | [157] |
AZ31 alloy | 35 μm | 100 nm | - | [158] |
Al0.1CoCrFeNi high-entropy alloy | 500 μm | 300 nm | 473 K (Limited temperature rise) | [138] |
90W-7Ni-3Fe alloy | 30 μm | 60–200 nm | Limited temperature rise | [28] |
Ti-10V-2Fe-3Al alloy | 327 μm | 174 nm | 673 K (0.38 Tm) | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, X.; Qu, S.; Wang, H.; Cao, G.; Feng, A.; Chen, D. Adiabatic Shear Localization in Metallic Materials: Review. Materials 2024, 17, 5365. https://doi.org/10.3390/ma17215365
Guan X, Qu S, Wang H, Cao G, Feng A, Chen D. Adiabatic Shear Localization in Metallic Materials: Review. Materials. 2024; 17(21):5365. https://doi.org/10.3390/ma17215365
Chicago/Turabian StyleGuan, Xinran, Shoujiang Qu, Hao Wang, Guojian Cao, Aihan Feng, and Daolun Chen. 2024. "Adiabatic Shear Localization in Metallic Materials: Review" Materials 17, no. 21: 5365. https://doi.org/10.3390/ma17215365
APA StyleGuan, X., Qu, S., Wang, H., Cao, G., Feng, A., & Chen, D. (2024). Adiabatic Shear Localization in Metallic Materials: Review. Materials, 17(21), 5365. https://doi.org/10.3390/ma17215365