Viologen-Directed Silver-Thiocyanate-Based Photocatalyst for Rhodamine B Degradation in Artificial Seawater
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Synthesis
2.3. X-Ray Crystallography
2.4. Photocatalytic Testing
3. Results
3.1. Crystal Structure of Catalyst
3.2. Characterizations and Photocurrent Response Behavior of Catalyst
3.3. Photocatalytic Degradation of RhB in Seawater
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaidy, S.S.H.; Vacchi, F.I.; Umbuzeiro, G.A.; Freeman, H.S. Approach to Waterless Dyeing of Textile Substrates-Use of Atmospheric Plasma. Ind. Eng. Chem. Res. 2019, 58, 18478–18487. [Google Scholar]
- Chormare, R.; Kumar, M.A. Environmental Health and Risk Assessment Metrics with Special Mention to Biotransfer, Bioaccumulation and Biomagnification of Environmental Pollutants. Chemosphere 2022, 302, 134836. [Google Scholar] [PubMed]
- Saravanan, S.; Carolin, C.F.; Kumar, P.S.; Chitra, B.; Rangasamy, G. Biodegradation of Textile Dye Rhodamine-B by Brevundimonas Diminuta and Screening of Their Breakdown Metabolites. Chemosphere 2022, 308, 136266. [Google Scholar] [PubMed]
- Wang, Z.; Huang, J. Research on Removing Reservoir Core Water Sensitivity using the Method of Ultrasound-Chemical Agent for Enhanced Oil Recovery. Ultrason. Sonochem. 2018, 42, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Sun, M.; Yuan, X.; Zhu, Y.; Lin, X.; Anandan, S. One-Step Hydrothermal Synthesis of N/Ti3+ Co-Doping Multiphasic TiO2/BiOBr Heterojunctions Towards Enhanced Sonocatalytic Performance. Ultrason. Sonochem. 2018, 49, 69–78. [Google Scholar]
- Belpaire, C.; Reyns, T.; Geeraerts, C.; Van Loco, J. Toxic Textile Dyes Accumulate in Wild European eel Anguilla Anguilla. Chemosphere 2015, 138, 784–791. [Google Scholar]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, B.; Sang, Y.; Liu, H. Heterostructures Construction on TiO2 Nanobelts: A Powerful Tool for Building High-Performance Photocatalysts. Appl. Catal. B 2017, 202, 620–641. [Google Scholar]
- Derikvandi, H.; Nezamzadeh-Ejhieh, A. Increased Photocatalytic Activity of NiO and ZnO in Photodegradation of a Model Drug Aqueous Solution: Effect of Coupling, Supporting, Particles Size and Calcination Temperature. J. Hazard. Mater. 2017, 321, 629–638. [Google Scholar]
- Sedghi, R.; Shariati, M.; Zarehbin, M.R.; Soorki, A.A. High-Performance Visible Light-Driven Ni-ZnO/rGO/nylon-6 & Ni-ZnO/rGO/nylon-6/Ag Nanofiber Webs for Degrading Dye Pollutant and Study their Antibacterial Properties. J. Alloys Compd. 2017, 729, 921–928. [Google Scholar]
- Sethi, Y.A.; Panmand, R.P.; Kadam, S.R.; Kulkarni, A.K.; Apte, S.K.; Naik, S.D.; Munirathnam, N.; Kulkarni, M.V.; Kale, B.B. Nanostructured CdS Sensitized CdWO4 Nanorods for Hydrogen Generation from Hydrogen Sulfide and Dye Degradation under Sunlight. J. Colloid Interface Sci. 2017, 487, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Datta, R.S.; Ou, J.Z.; Mohiuddin, M.; Carey, B.J.; Zhang, B.Y.; Khan, H.; Syed, N.; Zavabeti, A.; Haque, F.; Daeneke, T.; et al. Two Dimensional PbMoO4: A Photocatalytic Material Derived from a Naturally Non-Layered Crystal. Nano Energy 2018, 49, 237–246. [Google Scholar] [CrossRef]
- Datta, R.S.; Haque, F.; Mohiuddin, M.; Carey, B.J.; Syed, N.; Zavabeti, A.; Zhang, B.; Khan, H.; Berean, K.J.; Ou, J.Z.; et al. Highly Active Two Dimensional α-MoO3-x for the Electrocatalytic Hydrogen Evolution Reaction. J. Mater. Chem. A 2017, 5, 24223–24231. [Google Scholar] [CrossRef]
- Xu, Z.; Li, H.; Wu, Z.; Sun, J.; Ying, Z.; Wu, J.; Xu, N. Enhanced Charge Separation of Vertically Aligned CdS/g-C3N4 Heterojunction Nanocone Arrays and Corresponding Mechanisms. J. Mater. Chem. C 2016, 4, 7501–7507. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Guan, J.; Zhen, J.; Sun, Z.; Du, P.; Lu, Y.; Yang, S. A Facile Mechanochemical Route to a Covalently Bonded Graphitic Carbon Nitride (g-C3N4) and Fullerene Hybrid Toward Enhanced Visible Light Photocatalytic Hydrogen Production. Nanoscale 2017, 9, 5615–5623. [Google Scholar] [CrossRef]
- Gao, C.; Wang, J.; Xu, H.; Xiong, Y. Coordination Chemistry in the Design of Heterogeneous Photocatalysts. Chem. Soc. Rev. 2017, 46, 2799–2823. [Google Scholar] [CrossRef]
- Li, H.-H.; Zeng, X.-H.; Wu, H.-Y.; Jie, X.; Zheng, S.-T.; Chen, Z.-R. Incorporating Guest Molecules into Honeycomb Structures Constructed from Uranium(VI)-Polycarboxylates: Structural Diversities and Photocatalytic Activities for the Degradation of Organic Dye. Cryst. Growth Des. 2015, 15, 10–13. [Google Scholar] [CrossRef]
- Wang, D.H.; Lin, X.Y.; Wang, Y.K.; Zhang, W.T.; Song, K.Y.; Heng, L.; Li, H.H.; Chen, Z.R. A New Iodiplumbate-based Hybird Constructed from Asymmetric Viologenand Polyiodides: Structure, Properties and Photocatalytic Activity for the Degradation of Organic Dye. Chin. J. Struct. Chem. 2017, 36, 2000–2006. [Google Scholar]
- Zhao, L.-M.; Zhang, W.-T.; Song, K.-Y.; Wu, Q.-Q.; Li, Y.; Li, H.-H.; Chen, Z.-R. Lead-Carboxylate/Polyiodide Hybrids Constructed from Halogen Bonding and Asymmetric Viologen: Structures, Visible-Light-Driven Photocatalytic Properties and Enhanced Photocurrent Responses. CrystEngComm 2018, 20, 2245–2252. [Google Scholar] [CrossRef]
- Song, K.-Y.; Zhao, L.-M.; Zhang, W.-T.; Li, Y.; Li, H.-H.; Chen, Z.-R. Two-Dimensional Silver-Thiocyanate Layers Directed by Viologens: Structural Transformations upon Low Pressure Stimuli, Piezochromic Luminescence, Photocurrent Responses, and Photocatalytic Properties. Cryst. Growth Des. 2019, 19, 177–192. [Google Scholar] [CrossRef]
- Wang, Q.; Cai, C.; Wang, M.; Guo, Q.; Wang, B.; Luo, W.; Wang, Y.; Zhang, C.; Zhou, L.; Zhang, D.; et al. Efficient Photocatalytic Degradation of Malachite Green in Seawater by the Hybrid of Zinc-Oxide Nanorods Grown on Three-Dimensional (3D) Reduced Graphene Oxide(RGO)/Ni Foam. Materials 2018, 11, 1004. [Google Scholar] [CrossRef]
- Chen, P.; Hu, X.; Qi, Y.; Wang, X.; Li, Z.; Zhao, L.; Liu, S.; Cui, C. Rapid Degradation of Azo Dyes by Melt-Spun Mg-Zn-Ca Metallic Glass in Artificial Seawater. Metals 2017, 7, 485. [Google Scholar] [CrossRef]
- Makita, M.; Harata, A. Photocatalytic Decolorization of Rhodamine B Dye as a Model of Dissolved Organic Compounds: Influence of Dissolved Inorganic Chloride Salts in Seawater of the Sea of Japan. Chem. Eng. Process. 2008, 47, 859–863. [Google Scholar] [CrossRef]
- Zhuang, X.; Wu, Q.; Huang, X.; Li, H.; Lin, T.; Gao, Y. A Three-Component Hybrid Templated by Asymmetric Viologen Exhibiting Visible-Light-Driven Photocatalytic Degradation on Dye Pollutant in Maritime Accident Seawater. Catalysts 2021, 11, 640. [Google Scholar] [CrossRef]
- Nejatbakhsh, S.; Soodmand, A.M.; Azimi, B.; Farshchi, M.E.; Aghdasinia, H.; Kazemian, H. Semi-Pilot Scale Fluidized-Bed Reactor Applied for the Azo Dye Removal from Seawater by Granular Heterogeneous Fenton Catalysts. Chem. Eng. Res. Des. 2023, 195, 1–13. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, L.; Du, X.; Li, Z.; Shi, Y.; An, C.; Li, J.; Wang, C.; Shi, J. Janus Mesoporous Wood-based Membrane for Simultaneous Oil/Water Separation, Aromatic Dyes Removal, and Seawater Desalination. Ind. Crops. Prod. 2022, 188, 115643. [Google Scholar] [CrossRef]
- Juma, A.A.; Anđelika, B.; Veljko, Đ.; Jelena, M.; Đorđe, J.; Rada, P. Photocatalytic Efficiency of Titania Photocatalysts in Saline Waters. J. Serb. Chem. Soc. 2014, 79, 1127–1140. [Google Scholar]
- Hamdaoui, O.; Merouani, S. Impact of Seawater Salinity on the Sonochemical Removal of Emerging Organic Pollutants. Environ. Technol. 2020, 41, 2305–2313. [Google Scholar]
- Lin, X.-Y.; Zhao, L.-M.; Wang, D.-H.; Wang, Y.-K.; Li, M.; Li, H.-H.; Chen, Z.-R. Structural Diversities of Squarate-based Complexes: Photocurrent Responses and Thermochromic Behaviours Enchanced by Viologens. Inorg. Chem. Front. 2018, 5, 189–199. [Google Scholar]
- Fan, L.; Li, M.; Wu, Q.; Lin, X.; Wang, Y.; Wang, D.; Li, H.; Chen, Z. Heterometallic Iodoplumbates Modified by Copper(I) or Silver(I) with Viologens. J. Coord. Chem. 2017, 70, 71–83. [Google Scholar] [CrossRef]
- Wendlandt, W.M.; Hecht, H.G. Reflectance Spectroscopy; Interscience: New York, NY, USA, 1966. [Google Scholar]
- Zhou, X.-J.; Chen, C.; Ren, C.-X.; Sun, J.-K.; Zhang, J. Tunable Solid-State Photoluminescence based on Proton-Triggered Structural Transformation of 4,4′-Bipyridinium Derivative. J. Mater. Chem. C 2013, 1, 744–750. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Bailey, R.A.; Clark, H.M.; Ferris, J.P.; Krause, S.; Strong, R.L. Chemistry of the Environment; Elsevier: Amsterdam, The Netherlands, 2002; p. 416. [Google Scholar]
- Ju, Z.-F.; Yao, Q.-X.; Wu, W.; Zhang, J. Strong Electron-Accepting Methylviologen Dication Confined in Magnetic Hosts: Synthesis, Structural Characterization, Charge-Transfer and Magnetic Properties of {(MV)2[Ni(SCN)5]·Cl·2H2O}n and {(MV)[M(N3)2(SCN)2]}n (M = Mn, Co). Dalton. Trans. 2008, 355–362. [Google Scholar] [CrossRef]
- Macfarlane, A.J.; Williams, R.J.P. Charge-Transfer Properties of Some Paraquat Salts. J. Chem. Soc. A 1969, 1517–1520. [Google Scholar] [CrossRef]
- Horikoshi, S.; Saitou, A.; Hidaka, H.; Serpone, N. Environmental Remediation by an Integrated Microwave/UV Illumination Method. V. Thermal and Nonthermal Effects of Microwave Radiation on the Photocatalyst and on the Photodegradation of Rhodamine-B under UV/Vis Radiation. Environ. Sci. Technol. 2003, 37, 5813–5822. [Google Scholar] [CrossRef]
- Wang, G.H.; Wu, F.; Zhang, X.; Luo, M.D.; Deng, N.S. Enhanced TiO2 Photocatalytic Degradation of Bisphenol E by β-cyclodextrin in Suspended Solutions. J. Hazard. Mater. 2006, 133, 85–91. [Google Scholar] [CrossRef]
- Abou-Gamra, Z.M.; Ahmed, M.A. Synthesis of Mesoporous TiO2–curcumin Nanoparticles for Photocatalytic Degradation of Methylene Blue Dye. J. Photoch. Photobio. B 2016, 160, 134–141. [Google Scholar] [CrossRef]
Empirical formula | C10H11AgN3S2 |
Formula weight | 345.21 |
Temperature | 296(2) K |
Wavelength | 0.71073 Å |
Crystal system | Monoclinic |
Space group | P21/c |
Unit cell dimensions | a = 9.970(6) Å |
b = 11.155(7) Å β = 96.713(8)° | |
c = 11.536(7) Å | |
Volume | 1274.2(14) Å3 |
Crystal size/mm | 0.20 × 0.13 × 0.11 |
Z | 4 |
Density (calculated) | 1.799 mg/m3 |
Absorption coefficient | 1.885 mm−1 |
F(000) | 684 |
Theta range for data collection | 2.06 to 25.05° |
Index ranges | −11 ≤ h ≤ 11; −13 ≤ k ≤ 9;−12 ≤ l ≤ 13 |
Reflections collected | 4052 |
Independent reflections | 2199 [R(int) = 0.0171] |
Reflections observed (>2sigma) | 1891 |
Data Completeness | 0.976 |
Absorption correction | None |
Refinement method | Full-matrix least-squares on F2 |
Data/restraints/parameters | 2199/0/147 |
Goodness-of-fit on F2 | 1.029 |
Final R indices [I > 2sigma(I)] | R1 = 0.0252 wR2 = 0.0549 |
R indices (all data)Largest diff. peak and hole | R1 = 0.0324 wR2 = 0.05850.446 and −0.626 e. Å3 |
Ag(1)-S(1) | 2.6471(19) | Ag(1)-S(2) | 2.6050(13) |
Ag(1)-N(2) | 2.275(3) | Ag(1)-N(3)#1 | 2.262(3) |
N(2)-Ag(1)-S(1) | 102.56(7) | S(2)-Ag(1)-S(1) | 114.16(4) |
N(2)-Ag(1)-S(2) | 107.38(9) | N(3)#1-Ag(1)-S(1) | 105.50(8) |
N(3)#1-Ag(1)-N(2) | 123.69(11) | N(3)#1-Ag(1)-S(2) | 104.00(9) |
Symmtry codes: #1 x, −y + 1/2, z−1/2; #2 −x + 1, −y, −z + 1; #3 x, −y + 1/2, z + 1/2; #4 −x + 1, −y, −z |
D–H···A | D–H/Å | H···A/Å | D···A/Å | ∠(D–H···A)/° | Symmetry Codes |
---|---|---|---|---|---|
C(1)-H(1B)···S(2) | 0.960 | 2.965 | 3.894 | 163.13 | x − 1, y, z |
C(2)-H(2B)···S(1) | 0.960 | 2.958 | 3.876 | 160.54 | x − 1, y, z |
C(7)-H(9)···S(1) | 0.930 | 2.965 | 3.652 | 131.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, X.; Huang, X.; Li, H.; Lin, T.; Gao, Y. Viologen-Directed Silver-Thiocyanate-Based Photocatalyst for Rhodamine B Degradation in Artificial Seawater. Materials 2024, 17, 5289. https://doi.org/10.3390/ma17215289
Zhuang X, Huang X, Li H, Lin T, Gao Y. Viologen-Directed Silver-Thiocyanate-Based Photocatalyst for Rhodamine B Degradation in Artificial Seawater. Materials. 2024; 17(21):5289. https://doi.org/10.3390/ma17215289
Chicago/Turabian StyleZhuang, Xueqiang, Xihe Huang, Haohong Li, Tianjin Lin, and Yali Gao. 2024. "Viologen-Directed Silver-Thiocyanate-Based Photocatalyst for Rhodamine B Degradation in Artificial Seawater" Materials 17, no. 21: 5289. https://doi.org/10.3390/ma17215289
APA StyleZhuang, X., Huang, X., Li, H., Lin, T., & Gao, Y. (2024). Viologen-Directed Silver-Thiocyanate-Based Photocatalyst for Rhodamine B Degradation in Artificial Seawater. Materials, 17(21), 5289. https://doi.org/10.3390/ma17215289