Elastomer-Based Sealing O-Rings and Their Compatibility with Methanol, Ethanol, and Hydrotreated Vegetable Oil for Fueling Internal Combustion Engines
Abstract
:1. Introduction
2. Methodology
2.1. Materials
- Polyacrylate Elastomer—ACM (trade name Nipol AR®, Bohemia Seal, s.r.o., Prague, Czech Republic),
- Hydrogenated Acrylonitrile Butadiene Elastomer—HNBR (trade name Therban®, Bohemia Seal, s.r.o., Prague, Czech Republic),
- Fluorosilicone Elastomer—FVMQ (trade name Silastic®, Bohemia Seal, s.r.o., Prague, Czech Republic).
2.2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, C.; Xie, D.F.; Zhao, X.M.; Qu, X. The role of alternative fuel buses in the transition period of public transport electrification in Europe: A lifecycle perspective. Int. J. Sustain. Transport. 2023, 17, 626–638. [Google Scholar] [CrossRef]
- Bi, Z.; Song, L.; Kleine, R.; De, C.; Keoleian, G.A. Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus systém. Appl. Energy 2015, 146, 11–19. [Google Scholar] [CrossRef]
- Szeto, W.; Leung, D.Y.C. Is hydrotreated vegetable oil a superior substitute for fossil diesel? A comprehensive review on physicochemical properties, engine performance and emissions. Fuel 2022, 327, 125065. [Google Scholar] [CrossRef]
- Cedik, J.; Pexa, M.; Holubek, M.; Mrazek, J.; Valera, H.; Agarwal, A.K. Operational Parameters of a Diesel Engine Running on Diesel–Rapeseed Oil–Methanol–Iso-Butanol Blends. Energies 2021, 14, 6173. [Google Scholar] [CrossRef]
- Valera, H.; Agarwal, A.K. Future automotive powertrains for India: Methanol versus electric vehicles. In Alternative Fuels and Their Utilization Strategies in Internal Combustion Engines; Springer: Singapore, 2020; pp. 89–123. [Google Scholar]
- Muller, M.; Sleger, V.; Cedik, J.; Pexa, M. Research on the Material Compatibility of Elastomer Sealing O-Rings. Polymers 2022, 14, 3323. [Google Scholar] [CrossRef] [PubMed]
- Alvino, A.; Borsini, S. Testing of Rubber Nanocomposites for Aerospace, Automotive and Oil and Gas Applications. In High-Performance Elastomeric Materials Reinforced by Nano-Carbons; Elsevier: Amsterdam, The Netherlands, 2020; pp. 177–191. ISBN 9780128161982. [Google Scholar]
- Chea, S.; Luengchavanon, M.; Anancharoenwong, E.; Techato, K.A.; Jutidamrongphan, W.; Chaiprapat, S.; Niyomwas, S.; Marthosa, S. Development of an O-Ring from NR/EPDM Filled Silica/CB Hybrid Filler for Use in a Solid Oxide Fuel Cell Testing System. Polym. Test. 2020, 88, 106568. [Google Scholar] [CrossRef]
- Haseeb, A.; Jun, T.S.; Fazal, M.A.; Masjuki, H.H. Degradation of Physical Properties of Different Elastomers after Exposure to Palm Biodiesel. Energy 2011, 36, 1814–1819. [Google Scholar] [CrossRef]
- Bafna, S. Factors Influencing Hardness and Compression Set Measurements on O-Rings. Polym. Plast. Technol. Eng. 2013, 52, 1069–1073. [Google Scholar] [CrossRef]
- Trakarnpruk, W.; Porntangjitlikit, S. Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties. Renew. Energy 2008, 33, 1558–1563. [Google Scholar] [CrossRef]
- Linhares, F.N.; Correa, H.L.; Khalil, C.N.; Leite, M.C.; Furtado, C.R.G. Study of the compatibility of nitrile rubber with Brazilian biodiesel. Energy 2013, 49, 102–106. [Google Scholar] [CrossRef]
- Alves, S.M.; Mello, V.S.; Medeiros, J.S. Palm and soybean biodiesel compatibility with fuel system elastomers. Tribol. Int. 2013, 65, 74–80. [Google Scholar] [CrossRef]
- Thomas, E.W.; Fuller, R.E.; Terauchi, K. Fluoroelastomer compatibility with biodiesel fuels. J. Fuels Lubr. 2007, 116, 947–956. [Google Scholar]
- Zhang, X.; Li, L.; Wu, Z.; Hu, Z.; Zhou, Y. Material Compatibilities of Biodiesels with Elastomers, Metals and Plastics in a Diesel Engine; SAE Technical Paper 2009-01-2799; SAE International: Warrendale, PA, USA, 2009. [Google Scholar] [CrossRef]
- Crouse, M. The effects of non-petroleum based fuels on thermoset elastomers. SAE Trans. 2002, 111, 364–372. [Google Scholar] [CrossRef]
- Frame, E.; McCormick, R.L. Elastomer Compatibility Testing of Renewable Diesel Fuels; Technical report NREL/TP-540-38834; National Renewable Energy Laboratory: Golden, CO, USA, 2005. [Google Scholar]
- Munoz, M.; Moreno, F.; Monne, C.; Morea, J.; Terradillos, J. Biodiesel improves lubricity of new low sulphur diesel fuels. Renew. Energy 2011, 36, 2918–2924. [Google Scholar] [CrossRef]
- Chai, A.B.; Andriyana, A.; Verron, E.; Johan, M.R. Mechanical characteristics of swollen elastomers under cyclic loading. Mater. Des. 2013, 44, 566–572. [Google Scholar] [CrossRef]
- Chandran, D.; Ng, H.K.; Lau, H.L.N.; Gan, S.; Choo, Y.M. Investigation of the effects of palm biodiesel dissolved oxygen and conductivity on metal corrosion and elastomer degradation under novel immersion method. Appl. Therm. Eng. 2016, 104, 294–308. [Google Scholar] [CrossRef]
- Kumar, D.; Valera, H.; Agarwal, A.K. Technology Options for Methanol Utilization in Large Bore Diesel Engines of Railroad Sector. In Methanol: A Sustainable Transport Fuel for CI Engines; Springer: Singapore, 2021; pp. 89–123. [Google Scholar]
- DIN EN 590:2022; Automotive Fuels. Diesel. Requirements and Test Methods. European Committee for Standardization: Brussels, Belgium, 2022.
- Lv, X.; Yang, J.; Zhang, W.; Huang, Z. Effect of cetane number improver on heat release rate and emissions of high speed diesel engine fueled with ethanol–diesel blend fuel. Fuel 2004, 83, 2013–2020. [Google Scholar] [CrossRef]
- Bohl, T.; Smallbone, A.; Tian, G.; Roskilly, A.P. Particulate number and NO trade-off comparisons between HVO and mineral diesel in HD applications. Fuel 2018, 215, 90–101. [Google Scholar] [CrossRef]
- DIN EN 15940:2016; Automotive Fuels—Paraffinic Diesel Fuel from Synthesis or Hydrogenation—Requirements and Test Methods. European Committee for Standardization: Brussels, Belgium, 2016.
- ASTM D471-16a (2021); Standard Test Method for Rubber Property—Effect of Liquids. ASTM International: West Conshohocken, PA, USA, 2021.
- ČSN DIN 51900-1 (656169); Testing of Solid and Liquid Fuels—Determination of Heat of Combustion in the Calorimeter Pressure Vessel and Calorific Value Calculation—Part 1: General Information, Basic Equipment and Method. Czechoslovak Army 216/41: Hradec Králové, Czech Republic, 2014.
- ČSN DIN 51900-2 (656169); Testing of Solid and Liquid Fuels—Determination of Heat of Combustion in a Pressure Vessel Calorimeter and Calculation of Calorific Value—Part 2: Isoperibolic Calorimeter or Static Jacket Calorimeter Method. Czechoslovak Army 216/41: Hradec Králové, Czech Republic, 2015.
- DIN EN 10277:2018; Bright Steel Products—Technical Delivery Conditions—Part 1: General. European Committee for Standardization: Brussels, Belgium, 2018.
- DIN EN 10278; Dimensions, Their Limit Deviations and Shape and Position Tolerances of Polished Steel Products. European Committee for Standardization: Brussels, Belgium, 2003.
- Bessee, G.B.; Fey, J.P. Compatibility of elastomers and metals in biodiesel fuel blends. SAE Trans. 1997, 106, 650–661. [Google Scholar]
- Ch’ng, S.Y.; Andriyana, A.; Verron, E.; Kahbasi, O.; Ahmad, R. Development of a novel experimental device to investigate swelling of elastomers in biodiesel undergoing multiaxial large deformation. Exp. Mech. 2013, 53, 1323–1332. [Google Scholar] [CrossRef]
- DIN EN ISO 7500-1; Metallic Materials—Verification of Static Uniaxial Testing Machines—Part 1: Tensile and Compression Testing Machines—Verification and Calibration of the Force Measuring System. European Committee for Standardization: Brussels, Belgium, 2016.
- ČSN ISO 37; Rubber, Vulcanized or Thermoplastic Elastomer—Determination of Tensile Properties. Czechoslovak Army 216/41: Hradec Králové, Czech Republic, 2016.
- ČSN EN ISO 868 (640624); Plastics and Ebonite—Determination of Hardness by Indenting the Tip of a Hardness Tester (Shore Hardness). Czechoslovak Army 216/41: Hradec Králové, Czech Republic, 2003.
Test Fuel | Kinematic Viscosity at 40 °C (mm2 s−1) | Density at 15 °C (kg m−3) | Calorific Value (MJ kg−1) | Cetane Number | Carbon Content (% wt) | Hydrogen Content (% wt) | Oxygen Content (% wt) |
---|---|---|---|---|---|---|---|
D100 | 1.878 | 820.67 | 43.2 | 50 | 87 | 13 | 0 |
E100 | 1.21 | 812.93 | 26.8 | 5–8 | 52.2 | 13.1 | 34.7 |
HVO100 | 2.905 | 781.87 | 44 | >75 | 85 | 15 | 0 |
M100 | 0.563 | 797.57 | 19.6 | <5 | 37.5 | 12.6 | 49.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, M.; Mishra, R.K.; Šleger, V.; Pexa, M.; Čedík, J. Elastomer-Based Sealing O-Rings and Their Compatibility with Methanol, Ethanol, and Hydrotreated Vegetable Oil for Fueling Internal Combustion Engines. Materials 2024, 17, 430. https://doi.org/10.3390/ma17020430
Müller M, Mishra RK, Šleger V, Pexa M, Čedík J. Elastomer-Based Sealing O-Rings and Their Compatibility with Methanol, Ethanol, and Hydrotreated Vegetable Oil for Fueling Internal Combustion Engines. Materials. 2024; 17(2):430. https://doi.org/10.3390/ma17020430
Chicago/Turabian StyleMüller, Miroslav, Rajesh Kumar Mishra, Vladimir Šleger, Martin Pexa, and Jakub Čedík. 2024. "Elastomer-Based Sealing O-Rings and Their Compatibility with Methanol, Ethanol, and Hydrotreated Vegetable Oil for Fueling Internal Combustion Engines" Materials 17, no. 2: 430. https://doi.org/10.3390/ma17020430
APA StyleMüller, M., Mishra, R. K., Šleger, V., Pexa, M., & Čedík, J. (2024). Elastomer-Based Sealing O-Rings and Their Compatibility with Methanol, Ethanol, and Hydrotreated Vegetable Oil for Fueling Internal Combustion Engines. Materials, 17(2), 430. https://doi.org/10.3390/ma17020430