Blistering Behavior of Beryllium and Beryllium Alloy under High-Dose Helium Ion Irradiation
Abstract
1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Field, G.B.; Bahcall, J.N. Lyman Spitzer Jr (1914-97). Nature 1997, 387, 244. [Google Scholar] [CrossRef]
- Bondarenko, B.D. Role played by O A Lavrent’ev in the formulation of the problem and the initiation of research into controlled nuclear fusion in the USSR. Phys. Usp. 2001, 8, 844–851. [Google Scholar] [CrossRef]
- Giancarli, L.M.; Abdou, M.; Campbell, D.J.; Chuyanov, V.A.; Ahn, M.Y.; Enoeda, M.; Pan, C.; Poitevin, Y.; Kumar, E.R.; Ricapito, I.; et al. Overview of the ITER TBM Program. Fusion Eng. Des. 2012, 87, 395–402. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Poitevin, Y.; Boccaccini, L.V.; Zmitko, M.; Ricapito, I.; Salavy, J.F.; Diegele, E.; Gabriel, F.; Magnani, E.; Neuberger, H.; Lässer, R.; et al. Tritium breeder blankets design and technologies in Europe: Development status of ITER Test Blanket Modules, test & qualification strategy and roadmap towards DEMO. Fusion Eng. Des. 2010, 85, 2340–2347. [Google Scholar]
- Feng, K.M.; Pan, C.H.; Zhang, G.S.; Luo, T.Y.; Zhao, Z.; Chen, Y.J.; Feng, Y.J.; Ye, X.F.; Hu, G.; He, K.H. Progress on design and R&D for helium-cooled ceramic breeder TBM in China. Fusion Eng. Des. 2012, 87, 1138–1145. [Google Scholar]
- Liu, P.; Zhan, Q.; Hu, W.; Jia, Y.; Han, W.; Yi, X.; Wan, F. Microstructure evolution of beryllium with argon ion irradiation. Nucl. Mater. Energy 2017, 13, 99–103. [Google Scholar] [CrossRef]
- Gao, X.; Wan, B.; Song, Y.; Li, J.; Wan, Y. Progress on CFETR physics and engineering. Sci. Sin. Phys. Mech. Astron. 2019, 49, 045202. [Google Scholar] [CrossRef]
- Vladimirov, P.; Bachurin, D.; Borodin, V.; Chakin, V.; Ganchenkova, M.; Fedorov, A.; Klimenkov, M.; Kupriyanov, I.; Moeslang, A.; Nakamichi, M. Current Status of Beryllium Materials for Fusion Blanket Applications. Fusion Sci. Technol. 2014, 66, 28–37. [Google Scholar] [CrossRef]
- Chakin, V.; Rolli, R.; Moeslang, A.; Klimenkov, M.; Kolb, M.; Vladimirov, P.; Kurinskiy, P.; Schneider, H.; van Til, S.; Magielsen, A.J. Tritium release and retention properties of highly neutron-irradiated beryllium pebbles from HIDOBE-01 experiment. J. Nucl. Mater. 2013, 442, S483–S489. [Google Scholar] [CrossRef]
- Klimenkov, M.; Vladimirov, P.; Jäntsch, U.; Kuksenko, V.; Rolli, R.; Möslang, A.; Zimber, N. New insights into microstructure of irradiated beryllium based on experiments and computer simulations. Sci. Rep. 2020, 10, 8042. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, H.; Takahashi, H.; Yoshida, N.; Shestakov, V.; Ito, Y.; Uchida, M.; Yamada, H.; Nakamichi, M.; Ishitsuka, E. Application of beryllium intermetallic compounds to neutron multiplier of fusion blanket. Fusion Eng. Des. 2002, 61–62, 391–397. [Google Scholar] [CrossRef]
- Kurinskiy, P.; Moeslang, A.; Chakin, V.; Klimenkov, M.; Rolli, R.; van Til, S.; Goraieb, A.A. Characteristics of microstructure, swelling and mechanical behaviour of titanium beryllide samples after high-dose neutron irradiation at 740 and 873 K. Fusion Eng. Des. 2013, 88, 2198–2201. [Google Scholar] [CrossRef]
- Hwang, T.; Kim, J.; Sugimoto, Y.; Akatsu, Y.; Nakano, S.; Nakamichi, M. Development of advanced ternary beryllium intermetallic compounds. Fusion Eng. Des. 2024, 200, 114221. [Google Scholar] [CrossRef]
- Hwang, T.; Kim, J.; Sugimoto, Y.; Akatsu, Y.; Nakano, S.; Nakamichi, M. Tensile properties of beryllium-titanium intermetallic compounds. Fusion Eng. Des. 2023, 191, 113739. [Google Scholar] [CrossRef]
- Hwang, T.; Kim, J.; Nakano, S.; Nakamichi, M. Mechanical properties of beryllium-titanium intermetallic compounds fabricated by plasma sintering. Nucl. Mater. Energy 2022, 30, 101117. [Google Scholar] [CrossRef]
- Gaisin, R.; Frants, Y.; Kolmakov, M.; Zorin, B.; Kylyshkanov, M.; Podoinikov, M.; Udartsev, S.; Vechkutov, A.; Chakin, V.; Vladimirov, P. Beryllium intermetallics: Industrial experience on development and manufacture. Nucl. Mater. Energy 2023, 35, 101444. [Google Scholar] [CrossRef]
- Kawamura, H.; Uchida, M.; Shestakov, V. Compatibility between Be12Ti and SS316LN. J. Nucl. Mater. 2002, 307–311, 638–642. [Google Scholar] [CrossRef]
- Iwakiri, H.; Yasunaga, K.; Yoshida, N.; Uchida, M.; Kawamura, H. Thermal desorption of deuterium from ion irradiated Be12Ti. J. Nucl. Mater. 2004, 329–333, 880–884. [Google Scholar] [CrossRef]
- Munakata, K.; Kawamura, H.; Uchida, M. Stability of titanium beryllide under water vapor. J. Nucl. Mater. 2004, 329–333, 1357–1360. [Google Scholar] [CrossRef]
- Zimber, N.; Lammer, J.; Vladimirov, P.; Kothleitner, G.; Keast, V.J.; Dürrschnabel, M.; Klimenkov, M. Hydrogen and helium trapping in hcp beryllium. Commun. Chem. 2023, 6, 76. [Google Scholar] [CrossRef] [PubMed]
- Chakin, V.; Rolli, R.; Klimenkov, M.; Zmitko, M. Tritium release and retention in beryllium pebbles irradiated up to 640 appm tritium and 6000 appm helium. J. Nucl. Mater. 2020, 542, 152521. [Google Scholar] [CrossRef]
- Chakin, V.; Rolli, R.; Gaisin, R.; Hoeppener-Kramar, U.; Nakamichi, M.; Zmitko, M. Tritium release and retention in beryllium and titanium beryllide after neutron irradiation up to damage doses of 23-38 dpa. Fusion Eng. Des. 2020, 161, 111938. [Google Scholar] [CrossRef]
- Chakin, V.; Klimenkov, M.; Rolli, R.; Kurinskiy, P.; Moeslang, A.; Dorn, C. Microstructural and tritium release examination of titanium beryllides. J. Nucl. Mater. 2011, 417, 769–774. [Google Scholar] [CrossRef]
- Nakamichi, M.; Kim, J.; Wakai, D.; Yonehara, K. Development of a synthesis method of beryllides as advanced neutron multiplier for DEMO reactors. Fusion Eng. Des. 2012, 87, 896–899. [Google Scholar] [CrossRef]
- Nakamichi, M.; Kim, J.H. Homogenization treatment to stabilize the compositional structure of beryllide pebbles. J. Nucl. Mater. 2013, 440, 530–533. [Google Scholar] [CrossRef]
- Nakamichi, M.; Kim, J.H.; Miyamoto, M. Fabrication and characterization of advanced neutron multipliers for DEMO blanket. Nucl. Mater. Energy 2016, 9, 55–58. [Google Scholar] [CrossRef]
- Kim, J.H.; Hwang, T.; Nakano, S.; Miyamoto, M.; Nakamichi, M. Deuterium desorption and retention of Beryllium intermetallic compounds for fusion applications. J. Nucl. Mater. 2021, 550, 152936. [Google Scholar] [CrossRef]
- Liu, P.P.; Xue, L.W.; Hu, W.; Yu, L.P.; Zhao, H.F.; Wang, K.; Xue, F.J.; Jia, Y.M.; Zhan, Q.; Wan, F.R. Mechanical compression behaviors of single phase Be and binary Be12Ti pebbles. Fusion Eng. Des. 2019, 144, 202–208. [Google Scholar] [CrossRef]
- Ziegler, J.F. SRIM-2013 Program. 2013. Available online: http://www.srim.org/ (accessed on 8 August 2024).
- Sun, Y.; Diao, S.Z.; Liu, P.P.; Zhan, Q.; Wan, F.R. Anomalies in the calculation of dpa by using damage energy method based on full-cascades option of SRIM. Ann. Nucl. Energy 2023, 183, 109667. [Google Scholar] [CrossRef]
- Jia, Y.M.; Feng, Y.J.; Zhang, J.L.; Liu, P.P.; Zhan, Q.; Wan, F.R. Synthesis of beryllium pebbles using plasma rotating electrode process. In High Performance Structural Materials, Proceedings of the Chinese Materials Conference 2017 18th, Yinchuan, China, 6–12 July 2017; Springer: Singapore, 2018; pp. 17–23. [Google Scholar] [CrossRef]
- Liu, P.P.; Hu, W.; Song, J.; Jia, Y.M.; Zhan, Q.; Wan, F.R. Effect of high dose helium ion irradiation on the surface microstructure of a new neutron multiplying Be−W alloy. Chin. J. Eng. 2020, 42, 128–133. [Google Scholar]
- Nakamichi, M.; Kim, J.H. Fabrication and hydrogen generation reaction with water vapor of prototypic pebbles of binary beryllides as advanced neutron multiplier. Fusion Eng. Des. 2015, 98–99, 1838–1842. [Google Scholar] [CrossRef]
- Nakamichi, M.; Kim, J.H.; Munakata, K.; Shibayama, T.; Miyamoto, M. Preliminary characterization of plasma-sintered beryllides as advanced neutron multipliers. J. Nucl. Mater. 2013, 442 (Suppl. S1), S465–S471. [Google Scholar] [CrossRef]
- Kim, J.; Nakamichi, M. Optimization of synthesis conditions for plasma-sintered beryllium–titanium intermetallic compounds. J. Alloys Compd. 2013, 577, 90–96. [Google Scholar] [CrossRef]
- Trinkaus, H. Modeling of helium effects in metals: High temperature embrittlement. J. Nucl. Mater. 1985, 133, 105–112. [Google Scholar] [CrossRef]
- Trinkaus, H. On the modeling of the high-temperature embrittlement of metals containing helium. J. Nucl. Mater. 1983, 118, 39–49. [Google Scholar] [CrossRef]
- Zhang, C.H.; Chen, K.Q.; Wang, Y.S.; Sun, J.G.; Shen, D.Y. Formation of bubbles in helium implanted 316L stainless steel at temperatures between 25 and 550 °C. J. Nucl. Mater. 1997, 245, 210–216. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Yu, Y.; Luo, G.; Shu, X.; Lu, G. Helium defects interactions and mechanism of helium bubble growth in tungsten: A molecular dynamics simulation. J. Nucl. Mater. 2014, 451, 356–360. [Google Scholar] [CrossRef]
- Trinkaus, H.; Singh, B.N. Helium accumulation in metals during irradiation-where do we stand? J. Nucl. Mater. 2003, 323, 229–242. [Google Scholar] [CrossRef]
- Stoller, R.E.; Odette, G.R. Analytical Solutions For Hellium Bubble And Critical Radius Parameters. J. Nucl. Mater. 1985, 131, 118–125. [Google Scholar] [CrossRef]
- Taller, S.; Was, G.S. Understanding bubble and void nucleation in dual ion irradiated T91 steel using single parameter experiments. Acta Mater. 2020, 198, 47–60. [Google Scholar] [CrossRef]
- Evans, J.H. An interbubble fracture mechanism of blister formation on helium-irradiated metals. J. Nucl. Mater. 1977, 68, 129–140. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.-P.; Wang, Q.-C.; Jia, Y.-M.; Han, W.-T.; Yi, X.-O.; Zhan, Q.; Wan, F.-R. Blistering Behavior of Beryllium and Beryllium Alloy under High-Dose Helium Ion Irradiation. Materials 2024, 17, 3997. https://doi.org/10.3390/ma17163997
Liu P-P, Wang Q-C, Jia Y-M, Han W-T, Yi X-O, Zhan Q, Wan F-R. Blistering Behavior of Beryllium and Beryllium Alloy under High-Dose Helium Ion Irradiation. Materials. 2024; 17(16):3997. https://doi.org/10.3390/ma17163997
Chicago/Turabian StyleLiu, Ping-Ping, Qi-Cong Wang, Yu-Mei Jia, Wen-Tuo Han, Xiao-Ou Yi, Qian Zhan, and Fa-Rong Wan. 2024. "Blistering Behavior of Beryllium and Beryllium Alloy under High-Dose Helium Ion Irradiation" Materials 17, no. 16: 3997. https://doi.org/10.3390/ma17163997
APA StyleLiu, P.-P., Wang, Q.-C., Jia, Y.-M., Han, W.-T., Yi, X.-O., Zhan, Q., & Wan, F.-R. (2024). Blistering Behavior of Beryllium and Beryllium Alloy under High-Dose Helium Ion Irradiation. Materials, 17(16), 3997. https://doi.org/10.3390/ma17163997