Studying the Structure and Viscosity of MnO-SiO2-CaO-Al2O3-MgO Slag System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization Techniques
2.3. Viscosity Calculations
3. Results and Discussion
3.1. Characterization Results
Analysis of Raman Spectra
3.2. Structure-Related Raman Parameter
3.3. Quantitative Analysis of Raman Spectra
3.4. Relation between Structure and Viscosity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FeMn | Ferromanganese |
SiMn | Silicomanganese |
R | Raman parameter |
NBO/T | Non-bridging oxygen per tetrahedral cation |
XRF | X-ray fluorescence |
XRD | X-ray diffraction |
LW | Low-wavenumber |
MW | Medium-wavenumber |
HW | High-wavenumber |
B | Basicity |
OB | Optical basicity |
I | Intensity |
A | Relative abundance |
C | Band left |
X | Mole fraction |
References
- Olsen, S.E.; Tangstad, M.; Lindstad, T. Production of Manganese Ferroalloys; Tapir Akademisk Forlag: Trondheim, Norway, 2007. [Google Scholar]
- Tangstad, M.; Bublik, S.; Haghdani, S.; Einarsrud, K.E.; Tang, K. Slag properties in the primary production process of Mn-ferroalloys. Metall. Mater. Trans. B 2021, 52, 3688–3707. [Google Scholar] [CrossRef]
- Mills, K.; Sridhar, S. Viscosities of Ironmaking and Steelmaking Slags. Ironmak. Steelmak. 1999, 26, 262–268. [Google Scholar] [CrossRef]
- Kim, W.H.; Sohn, I.; Min, D.J. A Study on the Viscous Behaviour with K2O Additions in the CaO-SiO2-Al2O3-MgO-K2O Quinary Slag System. Steel Res. Int. 2010, 81, 735–741. [Google Scholar] [CrossRef]
- Eidem, P.A.; Solheim, I.; Ringdalen, E.; Tang, K.; Ravary, B. Laboratory study of slag metal separation for HCFeMn. In Proceedings of the Fourteenth International Ferroalloys Congress (INFACON XIV), Kiev, Ukraine, 31 May–4 June 2015; pp. 190–201. [Google Scholar]
- Folstad, M.B. Slag and Its Effect on Si and FeSi Production. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2023. [Google Scholar]
- Mysen, B.O.; Virgo, D.; Scarfe, C.M. Relations Between the Anionic Structure and Viscosity of Silicate Melts—A Raman Spectroscopic Study. Am. Mineral. 1980, 65, 690–710. [Google Scholar]
- Mysen, B.O. Relationships Between Properties and Structure of Aluminosilicate Melts. Am. Mineral. 1985, 70, 88–105. [Google Scholar]
- Mills, K. Slag Atlas, 2nd ed.; Verlag Stahleisen GmbH: Düsseldorf, Germany, 1995. [Google Scholar]
- Waseda, Y.; Toguri, J. The Structure and Properties of Oxide Melts; World Scientific Publishing: Singapore, 1998. [Google Scholar]
- Sohn, I.; Min, D.J. A review of the relationship between viscosity and the structure of calcium-silicate-based slags in ironmaking. Steel Res. Int. 2012, 83, 611–630. [Google Scholar] [CrossRef]
- Min, D.J.; Tsukihashi, F. Recent Advances in Understanding Physical Properties of Metallurgical Slags. Met. Mater. Int. 2017, 23, 1–19. [Google Scholar] [CrossRef]
- Kim, T.; Heo, J.; Kang, J.; Han, J.; Park, J. Understanding Viscosity-Structure Relationship of Slags and Its Influence on Metallurgical Processes. In Extraction 2018; Davis, B., Ed.; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2018; pp. 1121–1127. [Google Scholar] [CrossRef]
- Ma, S.; Li, K.; Zhang, J.; Jiang, C.; Bi, Z.; Sun, M.; Wang, Z. Effect of MnO content on slag structure and properties under different basicity conditions: A molecular dynamics study. J. Mol. Liq. 2021, 336, 116304. [Google Scholar] [CrossRef]
- Rossano, S.; Mysen, B. Raman Spectroscopy of silicate glasses and melts in geological systems. In Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage; Dubessy, J., Caumon, M.C., Rull, F., Eds.; Mineralogical Society of Great Britain and Ireland: Twickenham, UK, 2012; Volume 12, pp. 319–364. [Google Scholar] [CrossRef]
- Neuville, D.R.; de Ligny, D.; Henderson, G.S. Advances in Raman spectroscopy applied to Earth and material sciences. Rev. Mineral. Geochem. 2014, 78, 509–541. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, P. A Review of the Structures of Oxide Glasses by Raman Spectroscopy. RSC Adv. 2015, 5, 67583–67609. [Google Scholar] [CrossRef]
- Moulton, B.J.A.; Henderson, G.S.; Fukui, H.; Hiraoka, N.; de Ligny, D.; Sonneville, C.; Kanzaki, M. In situ structural changes of amorphous diopside (CaMgSi2O6) up to 20 GPa: A Raman and O K-edge X-ray Raman spectroscopic study. Geochim. Cosmochim. Acta 2016, 178, 41–61. [Google Scholar] [CrossRef]
- Malfait, W.J. Chapter 8—Vibrational properties of glasses and melts. In Magmas under Pressure; Kono, Y., Sanloup, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 211–236. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H.; Sun, Y.; Liu, L.; Wang, X. Insight into the relationship between viscosity and structure of CaO-SiO2-MgO-Al2O3 molten slags. Metall. Mater. Trans. B 2019, 50, 2930–2941. [Google Scholar] [CrossRef]
- Giordano, D.; Russell, J.K.; González-García, D.; Bersani, D.; Dingwell, D.B.; Del Negro, C. Raman spectroscopy from laboratory and proximal to remote sensing: A tool for the volcanological sciences. Remote Sens. 2020, 12, 805. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, G.H.; Chou, K.C.; Fan, D. Mixed alkali effect in viscosity of CaO-SiO2-Al2O3-R2O melts. Metall. Mater. Trans. B 2020, 51, 985–1002. [Google Scholar] [CrossRef]
- Haghdani, S.; Tangstad, M.; Einarsrud, K.E. A Raman-structure model for the viscosity of SiO2-CaO-Al2O3 system. Metall. Mater. Trans. B 2022, 53, 1733–1746. [Google Scholar] [CrossRef]
- Han, C. Viscosity Studies of High-Temperature Metallurgical Slags Relevant to Ironmaking Process. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2017. [Google Scholar] [CrossRef]
- Mysen, B.O.; Richet, P. Silicate Glasses and Melts: Properties and Structure; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Tanabe, I.; Oku, K.; Honda, T. Effects of Mangnesia on the Viscosity of High Carbon Ferro-Manganese slag. J. Electrochem. Soc. Jpn. 1960, 28, 262–266. [Google Scholar] [CrossRef]
- Woollacott, L.C.; Howat, D.D.; Jochens, P.R. The Viscosities and Electrical Conductivities of Slags Associated with the Production of High-Carbon Ferromanganese Alloys; South African Institute of Mining and Metallurgy: Johannesburg, South Africa, 1974; pp. 227–232. [Google Scholar]
- Persson, M. Investigations of Slag Properties and Reactions. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2007. [Google Scholar]
- Yan, B.; Liu, Y.; Shu, Q.; Deng, T.; Glaser, B. Measurements and Model Estimations of Viscosities of the MnO-CaO-SiO2-MgO-Al2O3 Melts. Metall. Mater. Trans. B 2019, 50, 376–384. [Google Scholar] [CrossRef]
- Segers, L.; Fontana, A.; Winand, R. Viscosite de melanges de silicates fondus du systeme CaO-SiO2-MnO. Electrochim. Acta 1979, 24, 213–218. [Google Scholar] [CrossRef]
- Urbain, G.; Bottinga, Y.; Richet, P. Viscosity of Liquid Silica, Silicates and Alumino-Silicates. Geochim. Cosmochim. Acta 1982, 46, 1061–1072. [Google Scholar] [CrossRef]
- Sridhar, S.; Sichen, D.; Seetharaman, S.; Mills, K.C. Viscosity Estimation Models for Ternary Slags. Steel Res. 2001, 72, 3–10. [Google Scholar] [CrossRef]
- Ji, F.Z. Experimental Studies of the Viscosities in CaO-MnO-SiO2 and CaO-FenO-MnO-SiO2 Slags. Metall. Mater. Trans. B 2001, 32, 181–186. [Google Scholar] [CrossRef]
- Ji, F.Z.; Sichen, D.; Seetharaman, S. Viscosities of Multicomponent Silicate Melts at High Temperatures. Int. J. Thermophys. 1999, 20, 309–323. [Google Scholar] [CrossRef]
- Kato, M.; Minowa, S. Viscosity Measurements of Molten Slag-Properties of Slag at Elevated Temperature (Part I). Trans. Iron Steel Inst. Jpn. 1969, 9, 31–38. [Google Scholar] [CrossRef]
- Park, J.H. Structure-property correlations of CaO-SiO2-MnO slag derived from Raman spectroscopy. ISIJ Int. 2012, 52, 1627–1636. [Google Scholar] [CrossRef]
- Park, J.H. Composition–Structure–Property Relationships of CaO–MO–SiO2 (M=Mg2+, Mn2+) Systems Derived from Micro-Raman Spectroscopy. J. Non-Cryst. Solids 2012, 358, 3096–3102. [Google Scholar] [CrossRef]
- Park, J.H.; Ko, K.Y.; Kim, T.S. Influence of CaF2 on the Viscosity and Structure of Manganese Ferroalloys Smelting Slags. Metall. Mater. Trans. B 2015, 46, 741–748. [Google Scholar] [CrossRef]
- Kim, T.S.; Jeong, S.J.; Park, J.H. Structural understanding of MnO–SiO2–Al2O3–Ce2O3 slag via Raman, 27Al NMR and X-ray photoelectron spectroscopies. Met. Mater. Int. 2020, 26, 1872–1880. [Google Scholar] [CrossRef]
- Kim, J.B.; Sohn, I. Effect of SiO2/Al2O3 and TiO2/SiO2 ratios on the viscosity and structure of the TiO2–MnO–SiO2–Al2O3 welding flux system. ISIJ Int. 2014, 54, 2050–2058. [Google Scholar] [CrossRef]
- Kim, T.S.; Park, J.H. Viscosity-structure Relationship of Alkaline Earth Silicate Melts Containing Manganese Oxide and Calcium Fluoride. J. Am. Ceram. Soc. 2019, 102, 4943–4955. [Google Scholar] [CrossRef]
- Mercier, M.; Muro, A.D.; Giordano, D.; Me’trich, N.; Lesne, P.; Pichavant, M.; Scaillet, B.; Clocchiatti, R.; Montagnac, G. Influence of glass polymerisation and oxidation on micro-Raman water analysis in alumino-silicate glasses. Geochim. Cosmochim. Acta 2009, 73, 197–217. [Google Scholar] [CrossRef]
- Giordano, D.; Russell, J.K. Towards a structural model for the viscosity of geological melts. Earth Planet. Sci. Lett. 2018, 501, 202–212. [Google Scholar] [CrossRef]
- Giordano, D.; González-García1, D.; Russell, J.K.; Raneri, S.; Bersani, D.; Fornasini, L.; Genova, D.D.; Ferrando, S.; Kaliwoda, M.; Lottici, P.P.; et al. A calibrated database of Raman spectra for natural silicate glasses: Implications for modelling melt physical properties. J. Raman Spectrosc. 2020, 51, 1822–1838. [Google Scholar] [CrossRef]
- Mills, K.C. The influence of structure on the physico-chemical properties of slags. ISIJ Int. 1993, 33, 148–155. [Google Scholar] [CrossRef]
- Bale, C.; Bélisle, E.; Chartrand, P.; Decterov, S.; Eriksson, G.; Hack, K.; Jung, I.H.; Kang, Y.B.; Melançon, J.; Pelton, A.; et al. FactSage Thermochemical Software and Databases - Recent Developments. Calphad 2009, 33, 295–311. [Google Scholar] [CrossRef]
- Bale, C.; Bélisle, E.; Chartrand, P.; Decterov, S.; Eriksson, G.; Gheribi, A.; Hack, K.; Jung, I.; Kang, Y.; Melançon, J.; et al. FactSage Thermochemical Software and Databases, 2010–2016. Calphad 2016, 54, 35–53. [Google Scholar] [CrossRef]
- Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Cryst. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Neuville, D.R.; Mysen, B.O. Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO2-NaAlO2. Geochim. Cosmochim. Acta 1996, 60, 1727–1737. [Google Scholar] [CrossRef]
- Choi, J.S.; Park, T.J.; Min, D.J. Structure–Property Relationship Amphoteric Oxide Systems via Phase Stability and Ionic Structural Analysis. J. Am. Ceram. Soc. 2021, 104, 140–156. [Google Scholar] [CrossRef]
- McMillan, P. Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. Am. Mineral. 1984, 69, 622–644. [Google Scholar]
- Mysen, B.; Richet, P. Structure of Metal Oxide-Silica Systems; Elsevier: Amsterdam, The Netherlands, 2019; pp. 223–262. [Google Scholar] [CrossRef]
- Origin(Pro), Version 2018; OriginLab Corporation: Northampton, MA, USA, 2018.
- Sun, Y.; Wang, H.; Zhang, Z. Understanding the relationship between structure and thermophysical properties of CaO-SiO2-MgO-Al2O3 molten slags. Metall. Mater. Trans. B 2018, 49, 677–687. [Google Scholar] [CrossRef]
- Frantza, J.D.; Mysen, B.O. Raman Spectra and Structure of BaO-SiO2 SrO-SiO2 and CaO-SiO2 Melts to 1600 °C. Chem. Geol. 1995, 121, 155–176. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Jiang, G.C.; You, J.L.; Hou, H.Y.; Chen, H. Raman scattering coefficients of symmetrical stretching modes of microstructural units in sodium silicate melts. Acta Phys. Sin. 2005, 54, 961–966. [Google Scholar] [CrossRef]
- Mysen, B.O.; Toplis, M.J. Structural Behavior of Al3+ in Peralkaline, Metaluminous, and Peraluminous Silicate Melts and Glasses at Ambient Pressure. Am. Mineral. 2007, 92, 933–946. [Google Scholar] [CrossRef]
- Mysen, B.O.; Virgo, D.; Kushiro, I. The Structural Role of Aluminum in Silicate Melts—A Raman Spectroscopic Study at 1 Atmosphere. Am. Mineral. 1981, 66, 678–701. [Google Scholar]
- Giordano, D.; Dingwell, D.B. Non-Arrhenian multicomponent melt Viscosity: A model. Earth Planet. Sci. Lett. 2003, 208, 337–349. [Google Scholar] [CrossRef]
Slag | Designed Compositions (wt%) | Basicity | ||||
---|---|---|---|---|---|---|
CaO | MnO | MgO | ||||
A1 | 70 | 20 | 10 | 0 | 0 | 0.28 |
A2 | 53 | 20 | 10 | 17 | 0 | 0.28 |
A3 | 70 | 14 | 10 | 0 | 6 | 0.28 |
A4 | 53 | 14 | 10 | 17 | 6 | 0.28 |
B1 | 65 | 25 | 10 | 0 | 0 | 0.38 |
B2 | 48 | 25 | 10 | 17 | 0 | 0.38 |
B3 | 65 | 19 | 10 | 0 | 6 | 0.38 |
B4 | 48 | 19 | 10 | 17 | 6 | 0.38 |
C1 | 60 | 30 | 10 | 0 | 0 | 0.50 |
C2 | 43 | 30 | 10 | 17 | 0 | 0.50 |
C3 | 60 | 24 | 10 | 0 | 6 | 0.50 |
C4 | 43 | 24 | 10 | 17 | 6 | 0.50 |
D1 | 55 | 35 | 10 | 0 | 0 | 0.63 |
D2 | 38 | 35 | 10 | 17 | 0 | 0.63 |
D3 | 55 | 29 | 10 | 0 | 6 | 0.63 |
D4 | 38 | 29 | 10 | 17 | 6 | 0.63 |
E1 | 50 | 40 | 10 | 0 | 0 | 0.80 |
E2 | 33 | 40 | 10 | 17 | 0 | 0.80 |
E3 | 50 | 34 | 10 | 0 | 6 | 0.80 |
E4 | 33 | 34 | 10 | 17 | 6 | 0.80 |
Slag | XRF Compositions (wt%) | Basicity | (K) | ||||
---|---|---|---|---|---|---|---|
CaO | MnO | MgO | |||||
A4 | 51.4 | 13.5 | 10.5 | 17.0 | 7.5 | 0.31 | 1522 |
B1 | 65.6 | 24.2 | 9.1 | 0.8 | 0.2 | 0.37 | 1867 |
B2 | 48.6 | 24.2 | 9.3 | 17.5 | 0.4 | 0.37 | 1582 |
B3 | 64.8 | 18.2 | 9.5 | 0.8 | 6.7 | 0.38 | 1840 |
B4 | 47.1 | 18.0 | 10.2 | 17.5 | 7.2 | 0.39 | 1543 |
C1 | 61.6 | 28.7 | 8.8 | 0.6 | 0.2 | 0.46 | 1744 |
C2 | 43.6 | 28.9 | 9.3 | 17.7 | 0.5 | 0.48 | 1549 |
C3 | 58.9 | 24.6 | 9.0 | 0.8 | 6.8 | 0.52 | 1618 |
C4 | 42.8 | 23.0 | 9.4 | 17.6 | 7.0 | 0.50 | 1525 |
D1 | 55.9 | 33.8 | 9.3 | 0.8 | 0.2 | 0.60 | 1691 |
D2 | 39.1 | 33.6 | 9.0 | 17.7 | 0.5 | 0.60 | 1490 |
D3 | 55.5 | 27.8 | 9.1 | 0.8 | 6.8 | 0.61 | 1609 |
D4 | 38.4 | 27.9 | 9.3 | 17.4 | 6.9 | 0.62 | 1538 |
E1 | 51.8 | 38.6 | 8.7 | 0.7 | 0.3 | 0.74 | 1734 |
E2 | 33.9 | 38.6 | 8.8 | 17.9 | 0.6 | 0.76 | 1638 |
E3 | 50.7 | 32.6 | 8.9 | 0.7 | 6.9 | 0.77 | 1644 |
E4 | 33.1 | 32.8 | 9.2 | 17.7 | 7.2 | 0.79 | 1634 |
Slag | B | OB | NBO/T | R | ||
---|---|---|---|---|---|---|
A4 | 0.41 | 0.57 | 0.68 | 517 | 968 | 0.76 |
B1 | 0.40 | 0.58 | 1.00 | 609 | 1034 | 0.81 |
B2 | 0.69 | 0.58 | 0.70 | 531 | 960 | 0.69 |
B3 | 0.45 | 0.58 | 1.13 | 614 | 1034 | 0.79 |
B4 | 0.52 | 0.58 | 0.84 | 567 | 949 | 0.69 |
C1 | 0.50 | 0.60 | 1.22 | 606 | 1037 | 0.79 |
C2 | 0.58 | 0.61 | 0.90 | 570 | 952 | 0.63 |
C3 | 0.61 | 0.61 | 1.46 | 609 | 1034 | 0.82 |
C4 | 0.66 | 0.60 | 1.03 | 584 | 944 | 0.61 |
D1 | 0.65 | 0.63 | 1.55 | 617 | 971 | 0.75 |
D2 | 0.74 | 0.63 | 1.13 | 578 | 928 | 0.70 |
D3 | 0.71 | 0.62 | 1.67 | 628 | 973 | 0.78 |
D4 | 0.82 | 0.62 | 1.28 | 584 | 914 | 0.44 |
E1 | 0.80 | 0.64 | 1.85 | 636 | 973 | 0.65 |
E2 | 0.95 | 0.65 | 1.42 | 584 | 887 | 0.27 |
E3 | 0.88 | 0.64 | 2.03 | 647 | 976 | 0.66 |
E4 | 1.05 | 0.65 | 1.60 | 589 | 885 | 0.25 |
Slag | Q0 | Q1 | Q2 | Q3 | |||||
---|---|---|---|---|---|---|---|---|---|
A0 | C0 | A1 | C1 | A2 | C2 | A3 | C3 | ||
A4 | 6.4 | 866 | 25.7 | 920 | 47.2 | 986 | 20.6 | 1057 | 1.65 |
B1 | 2.5 | 859 | 9.5 | 900 | 45.0 | 967 | 42.9 | 1052 | 1.34 |
B2 | 6.0 | 862 | 33.4 | 920 | 41.0 | 987 | 19.6 | 1050 | 1.69 |
B3 | 5.2 | 865 | 10.6 | 910 | 42.8 | 972 | 41.5 | 1054 | 1.35 |
B4 | 8.0 | 862 | 36.6 | 920 | 41.6 | 990 | 13.7 | 1061 | 1.84 |
C1 | 5.3 | 863 | 4.8 | 920 | 40.5 | 956 | 49.4 | 1050 | 1.28 |
C2 | 10.7 | 862 | 32.5 | 920 | 38.8 | 982 | 17.9 | 1053 | 1.73 |
C3 | 5.4 | 865 | 11.9 | 920 | 37.0 | 964 | 45.7 | 1050 | 1.31 |
C4 | 10.9 | 865 | 36.8 | 920 | 36.8 | 980 | 15.5 | 1050 | 1.80 |
D1 | 6.9 | 860 | 6.2 | 900 | 43.1 | 962 | 43.8 | 1050 | 1.33 |
D2 | 18.8 | 862 | 30.1 | 915 | 41.0 | 972 | 10.1 | 1050 | 1.96 |
D3 | 7.8 | 864 | 6.5 | 901 | 48.8 | 966 | 36.9 | 1050 | 1.40 |
D4 | 19.4 | 867 | 41.8 | 917 | 29.6 | 976 | 9.1 | 1050 | 2.06 |
E1 | 11.4 | 869 | 10.1 | 920 | 50.0 | 984 | 28.4 | 1050 | 1.51 |
E2 | 28.8 | 869 | 44.3 | 918 | 17.7 | 974 | 9.2 | 1050 | 2.14 |
E3 | 12.5 | 866 | 17.5 | 914 | 45.8 | 976 | 24.2 | 1050 | 1.58 |
E4 | 27.8 | 866 | 45.9 | 913 | 19.2 | 974 | 7.2 | 1050 | 2.23 |
Slag | Temperature (K) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1423 | 1473 | 1523 | 1573 | 1623 | 1673 | 1723 | 1773 | 1823 | 1873 | |
Viscosity () (Pas) | ||||||||||
A4 | 64.68 | 34.97 | 19.83 | 11.73 | 7.21 | 4.59 | 3.01 | 2.04 | 1.41 | 1.00 |
B1 | 66.55 | 39.66 | 24.47 | 15.57 | 10.19 | 6.84 | 4.70 | 3.30 | 2.37 | 1.73 |
B2 | 58.61 | 31.69 | 17.95 | 10.61 | 6.51 | 4.13 | 2.71 | 1.82 | 1.26 | 0.89 |
B3 | 40.11 | 24.45 | 15.40 | 10.00 | 6.67 | 4.56 | 3.18 | 2.27 | 1.65 | 1.22 |
B4 | 27.08 | 15.34 | 9.08 | 5.59 | 3.56 | 2.34 | 1.59 | 1.10 | 0.79 | 0.57 |
C1 | 26.73 | 16.43 | 10.42 | 6.81 | 4.57 | 3.14 | 2.21 | 1.58 | 1.16 | 0.86 |
C2 | 20.49 | 11.71 | 6.98 | 4.32 | 2.77 | 1.83 | 1.25 | 0.87 | 0.62 | 0.45 |
C3 | 13.07 | 8.26 | 5.38 | 3.60 | 2.47 | 1.73 | 1.24 | 0.91 | 0.68 | 0.51 |
C4 | 12.41 | 7.34 | 4.52 | 2.88 | 1.90 | 1.29 | 0.90 | 0.64 | 0.47 | 0.35 |
D1 | 9.52 | 6.05 | 3.96 | 2.66 | 1.83 | 1.29 | 0.93 | 0.68 | 0.51 | 0.38 |
D2 | 9.07 | 5.42 | 3.37 | 2.17 | 1.44 | 0.98 | 0.69 | 0.49 | 0.36 | 0.27 |
D3 | 7.64 | 4.91 | 3.25 | 2.21 | 1.54 | 1.09 | 0.79 | 0.59 | 0.44 | 0.34 |
D4 | 6.17 | 3.80 | 2.42 | 1.60 | 1.08 | 0.76 | 0.54 | 0.39 | 0.29 | 0.22 |
E1 | 5.11 | 3.31 | 2.20 | 1.51 | 1.05 | 0.75 | 0.55 | 0.41 | 0.31 | 0.24 |
E2 | 4.40 | 2.74 | 1.77 | 1.17 | 0.80 | 0.56 | 0.41 | 0.30 | 0.22 | 0.17 |
E3 | 4.02 | 2.63 | 1.77 | 1.23 | 0.83 | 0.63 | 0.46 | 0.34 | 0.26 | 0.20 |
E4 | 3.28 | 2.09 | 1.38 | 0.94 | 0.65 | 0.47 | 0.34 | 0.25 | 0.19 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghdani, S.; Tangstad, M.; Einarsrud, K.E. Studying the Structure and Viscosity of MnO-SiO2-CaO-Al2O3-MgO Slag System. Materials 2024, 17, 3789. https://doi.org/10.3390/ma17153789
Haghdani S, Tangstad M, Einarsrud KE. Studying the Structure and Viscosity of MnO-SiO2-CaO-Al2O3-MgO Slag System. Materials. 2024; 17(15):3789. https://doi.org/10.3390/ma17153789
Chicago/Turabian StyleHaghdani, Shokouh, Merete Tangstad, and Kristian Etienne Einarsrud. 2024. "Studying the Structure and Viscosity of MnO-SiO2-CaO-Al2O3-MgO Slag System" Materials 17, no. 15: 3789. https://doi.org/10.3390/ma17153789
APA StyleHaghdani, S., Tangstad, M., & Einarsrud, K. E. (2024). Studying the Structure and Viscosity of MnO-SiO2-CaO-Al2O3-MgO Slag System. Materials, 17(15), 3789. https://doi.org/10.3390/ma17153789