Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (454)

Search Parameters:
Keywords = silicate slags

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3206 KiB  
Article
Inverse Punicines: Isomers of Punicine and Their Application in LiAlO2, Melilite and CaSiO3 Separation
by Maximilian H. Fischer, Ali Zgheib, Iliass El Hraoui, Alena Schnickmann, Thomas Schirmer, Gunnar Jeschke and Andreas Schmidt
Separations 2025, 12(8), 202; https://doi.org/10.3390/separations12080202 - 30 Jul 2025
Viewed by 120
Abstract
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. [...] Read more.
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. These amphoteric molecules were synthesized via a straightforward four-step route and structurally tuned for hydrophobization by alkylation. Their performance as collectors was evaluated in microflotation experiments of lithium aluminate (LiAlO2) and silicate matrix minerals such as melilite and calcium silicate. Characterization techniques including ultraviolet-visible (UV-Vis), nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy as well as contact angle, zeta potential (ζ potential) and microflotation experiments revealed strong pH- and structure-dependent interactions with mineral surfaces. Notably, N-alkylated inverse Punicine derivatives showed high flotation yields for LiAlO2 at pH of 11, with a derivative possessing a dodecyl group attached to the nitrogen as collector achieving up to 86% recovery (collector conc. 0.06 mmol/L). Preliminary separation tests showed Li upgrading from 5.27% to 6.95%. Radical formation and light-response behavior were confirmed by ESR and flotation tests under different illumination conditions. These results demonstrate the potential of inverse Punicines as tunable, sustainable flotation reagents for advanced lithium recycling from complex slag systems. Full article
(This article belongs to the Special Issue Application of Green Flotation Technology in Mineral Processing)
Show Figures

Graphical abstract

19 pages, 10777 KiB  
Article
Improving Durability and Mechanical Properties of Silty Sand Stabilized with Geopolymer and Nanosilica Composites
by Mojtaba Jafari Kermanipour, Mohammad Hossein Bagheripour and Ehsan Yaghoubi
J. Compos. Sci. 2025, 9(8), 397; https://doi.org/10.3390/jcs9080397 - 30 Jul 2025
Viewed by 204
Abstract
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano [...] Read more.
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano poly aluminum silicate (PAS), was used to treat the soil. The long-term performance of the stabilized soil was evaluated under cyclic wetting–drying (W–D) conditions. The influence of PAS content on the mechanical strength, environmental safety, and durability of the stabilized soil was assessed through a series of laboratory tests. Key parameters, including unconfined compressive strength (UCS), mass retention, pH variation, ion leaching, and microstructural development, were analyzed using field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Results revealed that GGBS-stabilized specimens maintained over 90% of their original strength and mass after eight W–D cycles, indicating excellent durability. In contrast, RGP-stabilized samples exhibited early strength degradation, with up to an 80% reduction in UCS and 10% mass loss. Environmental evaluations confirmed that leachate concentrations remained within acceptable toxicity limits. Microstructural analysis further highlighted the critical role of PAS in enhancing the chemical stability and long-term performance of the stabilized soil matrix. Full article
Show Figures

Figure 1

15 pages, 2645 KiB  
Article
Carbon Footprint and Uncertainties of Geopolymer Concrete Production: A Comprehensive Life Cycle Assessment (LCA)
by Quddus Tushar, Muhammed A. Bhuiyan, Ziyad Abunada, Charles Lemckert and Filippo Giustozzi
C 2025, 11(3), 55; https://doi.org/10.3390/c11030055 - 28 Jul 2025
Viewed by 657
Abstract
This study aims to estimate the carbon footprint and relative uncertainties for design components of conventional and geopolymer concrete. All the design components of alkaline-activated geopolymer concrete, such as fly ash, ground granulated blast furnace slag, sodium hydroxide (NaOH), sodium silicate (Na2 [...] Read more.
This study aims to estimate the carbon footprint and relative uncertainties for design components of conventional and geopolymer concrete. All the design components of alkaline-activated geopolymer concrete, such as fly ash, ground granulated blast furnace slag, sodium hydroxide (NaOH), sodium silicate (Na2SiO3), superplasticizer, and others, are assessed to reflect the actual scenarios of the carbon footprint. The conjugate application of the life cycle assessment (LCA) tool SimPro 9.4 and @RISK Monte Carlo simulation justifies the variations in carbon emissions rather than a specific determined value for concrete binders, precursors, and filler materials. A reduction of 43% in carbon emissions has been observed by replacing cement with alkali-activated binders. However, the associative uncertainties of chemical admixtures reveal that even a slight increase may cause significant environmental damage rather than its benefit. Pearson correlations of carbon footprint with three admixtures, namely sodium silicate (r = 0.80), sodium hydroxide (r = 0.52), and superplasticizer (r = 0.19), indicate that the shift from cement to alkaline activation needs additional precaution for excessive use. Therefore, a suitable method of manufacturing chemical activators utilizing renewable energy sources may ensure long-term sustainability. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

18 pages, 3231 KiB  
Article
Investigation into the Properties of Alkali-Activated Fiber-Reinforced Slabs, Produced with Marginal By-Products and Recycled Plastic Aggregates
by Fotini Kesikidou, Kyriakos Koktsidis and Eleftherios K. Anastasiou
Constr. Mater. 2025, 5(3), 48; https://doi.org/10.3390/constrmater5030048 - 24 Jul 2025
Viewed by 183
Abstract
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary [...] Read more.
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary widely. In this work, several alkali-activated mortars based on marginal by-products as binders, such as high calcium fly ash and ladle furnace slag, are investigated. Their mechanical (flexural and compressive strength, ultrasonic pulse velocity, and modulus of elasticity) and physical (porosity, absorption, specific gravity, and pH) properties were determined. After evaluating the mechanical performance of the mortars, the optimum mixture containing fly ash, which reached 15 MPa under compression at 90 days, was selected for the production of precast compressed slabs. Steel or glass fibers were also incorporated to improve their ductility. To reduce the density of the slabs, 60% of the siliceous sand aggregate was also replaced with recycled polyethylene terephthalate (PET) plastic aggregate. The homogeneity, density, porosity, and capillary absorption of the slabs were measured, as well as their flexural strength and fracture energy. The results showed that alkali activation can be used to improve the mechanical properties of weak secondary binders such as ladle furnace slag and hydrated fly ash. The incorporation of recycled PET aggregates produced slabs that could be classified as lightweight, with similar porosity and capillary absorption values, and over 65% achieved strength compared to the normal weight slabs. Full article
Show Figures

Figure 1

23 pages, 4508 KiB  
Article
One-Week Hydration Characteristics of Silica-Alumina Based Cementitious Materials Composed of Phosphorous Slag: Phosphorus Involved in Calcium Alumino-Silicate Hydrate Gel
by Zipei Li, Yu Wang, Jiale Zhang, Yipu Wang, Na Zhang, Xiaoming Liu and Yinming Sun
Materials 2025, 18(14), 3360; https://doi.org/10.3390/ma18143360 - 17 Jul 2025
Viewed by 280
Abstract
Phosphorous slag is an industrial by-product generated in the process of producing yellow phosphorus by electric furnace, which occupies a substantial number of land resources and causes serious environmental pollution. The comprehensive utilization of phosphorous slag is a major topic relevant to the [...] Read more.
Phosphorous slag is an industrial by-product generated in the process of producing yellow phosphorus by electric furnace, which occupies a substantial number of land resources and causes serious environmental pollution. The comprehensive utilization of phosphorous slag is a major topic relevant to the sustainability of the yellow phosphorus industry. In this paper, we attempted to utilize phosphorous slag as a supplementary cementing material to prepare silica-aluminum based cementitious material (SAC-PHS). To determine how phosphorus influences the early-age hydration reaction process of silica-aluminum based cementitious material, three groups of samples, PHS20, PHS25, and PHS30, with better mechanical properties were selected to deeply investigate their one-week hydration characteristics. Characterization results showed that the main hydration products of SAC-PHS were C-A-S-H gels and ettringite. PHS25 specimen produced more C-A-S-H gels and ettringite than the other two samples after one-week hydration. Interestingly, the P/Si atomic ratio indicated that chemical bonds were formed between Si and P during the formation of C-A-S-H gels, which improved the strength of SAC-PHS. Our findings offer valuable insights for the application of phosphorous slag in construction and building materials and promote the efficient resource utilization of phosphorous residue. Full article
Show Figures

Figure 1

27 pages, 14650 KiB  
Article
Development of High-Performance Composite Cementitious Materials for Offshore Engineering Applications
by Risheng Wang, Hongrui Wu, Zengwu Liu, Hanyu Wang and Yongzhuang Zhang
Materials 2025, 18(14), 3324; https://doi.org/10.3390/ma18143324 - 15 Jul 2025
Viewed by 202
Abstract
This study focuses on the development of high-performance composite cementitious materials for offshore engineering applications, addressing the critical challenges of durability, environmental degradation, and carbon emissions. By incorporating polycarboxylate superplasticizers (PCE) and combining fly ash (FA), ground granulated blast furnace slag (GGBS), and [...] Read more.
This study focuses on the development of high-performance composite cementitious materials for offshore engineering applications, addressing the critical challenges of durability, environmental degradation, and carbon emissions. By incorporating polycarboxylate superplasticizers (PCE) and combining fly ash (FA), ground granulated blast furnace slag (GGBS), and silica fume (SF) in various proportions, composite mortars were designed and evaluated. A series of laboratory tests were conducted to assess workability, mechanical properties, volume stability, and durability under simulated marine conditions. The results demonstrate that the optimized composite exhibits superior performance in terms of strength development, shrinkage control, and resistance to chloride penetration and freeze–thaw cycles. Microstructural analysis further reveals that the enhanced performance is attributed to the formation of additional calcium silicate hydrate (C–S–H) gel and a denser internal matrix resulting from secondary hydration. These findings suggest that the proposed material holds significant potential for enhancing the long-term durability and sustainability of marine infrastructure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 4996 KiB  
Article
Mechanical Properties and Microstructures of Solid Waste Composite-Modified Lateritic Clay via NaOH/Na2CO3 Activation: A Sustainable Recycling Solution of Steel Slag, Fly Ash, and Granulated Blast Furnace Slag
by Wei Qiao, Bing Yue, Zhihua Luo, Shengli Zhu, Lei Li, Heng Yang and Biao Luo
Materials 2025, 18(14), 3307; https://doi.org/10.3390/ma18143307 - 14 Jul 2025
Viewed by 301
Abstract
The utilization of steel slag (SS), fly ash (FA), and ground granulated blast furnace slag (GGBFS) as soil additives in construction represents a critical approach to achieving resource recycling of these industrial by-products. This study aims to activate the SS-FA-GGBFS composite with a [...] Read more.
The utilization of steel slag (SS), fly ash (FA), and ground granulated blast furnace slag (GGBFS) as soil additives in construction represents a critical approach to achieving resource recycling of these industrial by-products. This study aims to activate the SS-FA-GGBFS composite with a NaOH solution and Na2CO3 and employ the activated solid waste blend as an admixture for lateritic clay modification. By varying the concentration of the NaOH solution and the dosage of Na2CO3 relative to the SS-FA-GGBFS composite, the effects of these parameters on the activation efficiency of the composite as a lateritic clay additive were investigated. Results indicate that the NaOH solution activates the SS-FA-GGBFS composite more effectively than Na2CO3. The NaOH solution significantly promotes the depolymerization of aluminosilicates in the solid waste materials and the generation of Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate gels. In contrast, Na2CO3 relies on its carbonate ions to react with calcium ions in the materials, forming calcium carbonate precipitates. As a rigid cementing phase, calcium carbonate exhibits a weaker cementing effect on soil compared to Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate gels. However, excessive NaOH leads to inefficient dissolution of the solid waste and induces a transformation of hydration products in the modified lateritic clay from Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate to Sodium-Silicate-Hydrate and Sodium-Aluminate-Hydrate, which negatively impacts the strength and microstructural compactness of the alkali-activated solid waste composite-modified lateritic clay. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 4856 KiB  
Article
Mechanical Properties of Recycled Concrete with Carbide Slag Slurry Pre-Immersed and Carbonated Recycled Aggregate
by Xiangfei Wang, Guoliang Guo, Jinglei Liu, Chun Lv and Mingyan Bi
Materials 2025, 18(14), 3281; https://doi.org/10.3390/ma18143281 - 11 Jul 2025
Viewed by 262
Abstract
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded [...] Read more.
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded mortar of recycled coarse aggregate by pre-impregnating it with carbide slag slurry (CSS). This approach enhances the subsequent carbonation effect and thus the properties of recycled aggregates. The experimental results showed that the method significantly improved the water absorption, crushing value, and apparent density of the recycled aggregate. Additionally, it enhanced the compressive strength, split tensile strength, and flexural strength of the recycled concrete produced using the aggregate improved by this method. Microanalysis revealed that CO2 reacts with calcium hydroxide and hydrated calcium silicate (C-S-H) to produce calcite-type calcium carbonate and amorphous silica gel. These reaction products fill microcracks and pores on the aggregate and densify the aggregate–paste interfacial transition zone (ITZ), thereby improving the properties of recycled concrete. This study presents a practical approach for the high-value utilization of construction waste and the production of low-carbon building materials by enhancing the quality of recycled concrete. Additionally, carbon sequestration demonstrates broad promise for engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

20 pages, 2334 KiB  
Article
Study on Mechanical Properties of Alkali-Activated Coal Gasification Slag Concrete
by Rongjian Shen, Xiaojun Li and Shen Li
Materials 2025, 18(14), 3240; https://doi.org/10.3390/ma18143240 - 9 Jul 2025
Viewed by 216
Abstract
Coal gasification slag (CGS) is a solid byproduct generated during coal gasification. Stacking and land-filling of CGS wastes substantial land resources and has significant environmental risks. In this paper, based on the Ca/Si and Si/Al ratios of the raw materials, the mix design [...] Read more.
Coal gasification slag (CGS) is a solid byproduct generated during coal gasification. Stacking and land-filling of CGS wastes substantial land resources and has significant environmental risks. In this paper, based on the Ca/Si and Si/Al ratios of the raw materials, the mix design of alkali-activated CGS concrete was optimized using a pure center-of-gravity design method. The compressive and flexural strengths of geopolymer concrete with varying mix proportions were measured to investigate the effects of sodium silicate modulus, material content, and dry density on its mechanical properties. Specimens of different sizes were prepared to analyze the influence of testing methods on the compressive, flexural, and tensile properties. The results indicate that the mechanical properties of geopolymer concrete are significantly influenced by the raw material composition and the modulus of the activator. With increasing curing age, both compressive and flexural strengths exhibit varying degrees of improvement. The stress-strain behavior of alkali-activated CGS concrete aligns closely with that of ordinary concrete. A comparative analysis of 100 mm length and 20 mm length cubic specimens revealed a compressive strength size conversion coefficient of approximately 0.456, while the flexural specimen exhibited a coefficient of 0.599. For tensile strength evaluation, both the Brazilian splitting method and the double punch test method yielded consistent and reliable results, demonstrating their suitability for assessing CGS-based concrete. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete)
Show Figures

Figure 1

16 pages, 6251 KiB  
Article
Removal of HF via CaCl2-Modified EAF Slag: A Waste-Derived Sorbent Approach
by Go-eun Kim, Seong-ho Jang and Young-chae Song
Water 2025, 17(13), 1919; https://doi.org/10.3390/w17131919 - 27 Jun 2025
Viewed by 428
Abstract
This study evaluates CaCl2-modified electric arc furnace (EAF) slag for fluoride removal from synthetic hydrofluoric acid (HF) wastewater. Adsorption performance was assessed under different particle sizes (850 μm–1.7 mm, 250–850 μm, and <250 μm), temperatures (25–45 °C), and initial pH values [...] Read more.
This study evaluates CaCl2-modified electric arc furnace (EAF) slag for fluoride removal from synthetic hydrofluoric acid (HF) wastewater. Adsorption performance was assessed under different particle sizes (850 μm–1.7 mm, 250–850 μm, and <250 μm), temperatures (25–45 °C), and initial pH values (2–11), using oxidized (EOS) and reduced (ERS) slags in raw and modified (C1, C2) forms. Characterization included isotherm modeling (Langmuir and Freundlich), X-ray diffraction (XRD), and inductively coupled plasma mass spectrometry (ICP-MS). The CaCl2-modified slags (particularly EOS-C2 and ERS-C2) demonstrated stable performance under all conditions. ERS-C2 achieved the maximum adsorption capacity of 16.13 mg/g at 600 mg F/L. EOS-C2 maintained capacities above 8.0 mg/g across pH 2–11, whereas unmodified slag showed a decline in performance above pH 5, with residual concentrations exceeding 250 mg F/L and capacities dropping to 1.14–2.14 mg/g. XRD analysis indicated increased amorphization and enhancement of dicalcium silicate and brownmillerite phases after modification. Isotherm fitting showed better agreement with the Freundlich model, suggesting multilayer adsorption. Leaching tests confirmed that Cr, Cu, and As concentrations were within safe limits, while Pb and Cd were not detected. These results demonstrate the strong potential of CaCl2-modified EAF slag as an efficient, pH-stable, and environmentally safe adsorbent for treating HF-containing industrial wastewater. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 1674 KiB  
Article
Feasibility of the Maturity Concept for Strength Prediction in Geopolymer Based Materials
by Rafah R. Abdulmajid, Dillshad K. Bzeni, Farid H. Abed and Hussein M. Hamada
J. Compos. Sci. 2025, 9(7), 329; https://doi.org/10.3390/jcs9070329 - 26 Jun 2025
Cited by 1 | Viewed by 383 | Correction
Abstract
The aim of this work is to investigate the effect of curing temperature and time on the development of compressive strength in geopolymer mortars produced using ground granulated blast-furnace slag (GGBFS) and fly ash (FA). Considering curing circumstances, both the activation energy and [...] Read more.
The aim of this work is to investigate the effect of curing temperature and time on the development of compressive strength in geopolymer mortars produced using ground granulated blast-furnace slag (GGBFS) and fly ash (FA). Considering curing circumstances, both the activation energy and the reference temperature could be used properly to build a reliable anticipated model for predicting the compressive strength of geopolymer-based products (mortar and concrete) using maturity-based techniques. In this study, the compressive strength development of geopolymer mortar made from (FA) and (GGBFS) under varying curing conditions. The mortar was prepared using an alkali solution of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) in a 1:1 ratio, with NaOH molarity of 12. Specimens were cast following ASTM C109 standards, with a binder/sand ratio of 1:2.75, and compacted for full densification. FA-based mortar was cured at 40 °C, 80 °C, and 120 °C, while GGBFS-based mortar was cured at 5 °C, 15 °C, and 40 °C for durations of 0.5 to 32 days. Compressive strength was evaluated at each curing period, and data were analyzed using ASTM C1074 procedures alongside a computational model to determine the best-fit datum temperature and activation energy. The Nurse-Saul maturity method and Arrhenius equation were applied to estimate the equivalent age and maturity index of each mix. A predictive model was developed for geopolymer concrete prepared at an alkali-to-binder ratio of 0.45 and NaOH molarity of 12. The final equation demonstrated high accuracy, offering a reliable tool for predicting geopolymer strength under diverse curing conditions and providing valuable insights for optimizing geopolymer concrete formulations. Full article
Show Figures

Figure 1

16 pages, 2956 KiB  
Article
Utilization of Red Mud from Processing of Low-Quality Bauxites
by Sergey Gladyshev, Nazym Akhmadiyeva, Rinat Abdulvaliyev, Leila Imangaliyeva, Kenzhegali Smailov, Yerkezhan Abikak, Asya Kasymzhanova and Leila Amanzholova
Processes 2025, 13(7), 1958; https://doi.org/10.3390/pr13071958 - 20 Jun 2025
Viewed by 318
Abstract
Red mud from bauxite processing is among the large-tonnage technogenic waste that poses a significant ecological threat. At the same time, red mud serves as a raw material source for expanding the resource base for obtaining iron, rare metals, and rare earth elements. [...] Read more.
Red mud from bauxite processing is among the large-tonnage technogenic waste that poses a significant ecological threat. At the same time, red mud serves as a raw material source for expanding the resource base for obtaining iron, rare metals, and rare earth elements. Numerous studies on their utilization have shown that only through comprehensive processing, combining pyrometallurgical and hydrometallurgical methods, is it possible to maximize the extraction of all the useful components. This work addresses the first stage of a comprehensive technology for processing red mud through reduction smelting, separating iron in the form of pig iron, and producing slag. Studies were conducted on the reductive smelting of red mud using waste slurry from alumina production as the calcium-containing material, taken in proportions calculated to obtain a fluid slag with a hydraulic modulus of 0.55–0.8. The permissible mixing range of red mud with waste slurry was determined to be in the ratio of 0.56–1.2. In cases where the charge was prepared in violation of the required hydraulic modulus value, pig iron was not obtained during smelting. When the hydraulic modulus requirement was met, the temperature of the reductive smelting process was 1350–1400 °C. The total amount of recovered iron obtained as pig iron and fine fractions amounted to 99.5% of the original content. The low iron content (0.23–0.31%) in the non-magnetic slag fraction allows for the production of high-quality titanium oxide and rare earth element concentrates in the subsequent stages of the comprehensive hydrometallurgical processing of red mud, involving acid leaching. Based on the results of a phase analysis of the slag, pig iron, and melt, the reactions of the reductive smelting process were established, and their thermodynamic likelihood was determined. In fluid slags, the content of the sodium aluminosilicate phase is twice as high as that in slag with a higher hydraulic modulus. The reductive smelting of 100% red mud with the addition of calcium oxide, calculated to achieve a hydraulic module of 0.55 at a temperature of 1350–1400 °C, produced pig iron and slag with high alkali and iron contents. Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
Show Figures

Figure 1

23 pages, 4661 KiB  
Article
Microstructural, Mechanical and Fresh-State Performance of BOF Steel Slag in Alkali-Activated Binders: Experimental Characterization and Parametric Mix Design Method
by Lucas B. R. Araújo, Daniel L. L. Targino, Lucas F. A. L. Babadopulos, Heloina N. Costa, Antonio E. B. Cabral and Juceline B. S. Bastos
Buildings 2025, 15(12), 2056; https://doi.org/10.3390/buildings15122056 - 15 Jun 2025
Viewed by 505
Abstract
Alkali-activated binders (AAB) are a suitable and sustainable alternative to ordinary Portland cement (OPC), with reductions in natural resource usage and environmental emissions in regions where the necessary industrial residues are available. Despite its potential, the lack of mix design methods still limits [...] Read more.
Alkali-activated binders (AAB) are a suitable and sustainable alternative to ordinary Portland cement (OPC), with reductions in natural resource usage and environmental emissions in regions where the necessary industrial residues are available. Despite its potential, the lack of mix design methods still limits its applications. This paper proposes a systematic parametric validation for AAB mix design applied to pastes and concretes, valorizing steel slag as precursors. The composed binders are based on coal fly ash (FA) and Basic Oxygen Furnace (BOF) steel slag. These precursors were activated with sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) alkaline solutions. A parametric investigation was performed on the mix design parameters, sweeping the (i) alkali content from 6% to 10%, (ii) silica modulus (SiO2/Na2O) from 0.75 to 1.75, and (iii) ash-to-slag ratios in the proportions of 75:25 and 50:50, using parametric intervals retrieved from the literature. These variations were analyzed using response surface methodology (RSM) to develop a mechanical model of the compressive strength of the hardened paste. Flowability, yield stress, and setting time were evaluated. Statistical analyses, ANOVA and the Duncan test, validated the model and identified interactions between variables. The concrete formulation design was based on aggregates packing analysis with different paste contents (from 32% up to 38.4%), aiming at self-compacting concrete (SCC) with slump flow class 1 (SF1). The influence of the curing condition was evaluated, varying with ambient and thermal conditions, at 25 °C and 65 °C, respectively, for the initial 24 h. The results showed that lower silica modulus (0.75) achieved the highest compressive strength at 80.1 MPa (28 d) for pastes compressive strength, densifying the composite matrix. The concrete application of the binder achieved SF1 fluidity, with 575 mm spread, 64.1 MPa of compressive strength, and 26.2 GPa of Young’s modulus in thermal cure conditions. These findings demonstrate the potential for developing sustainable high-performance materials based on parametric design of AAB formulations and mix design. Full article
(This article belongs to the Special Issue Advances in Cementitious Materials)
Show Figures

Figure 1

29 pages, 5482 KiB  
Article
Mitigation of Volume Changes in Alkali-Activated Slag by Using Metakaolin
by Maïté Lacante, Brice Delsaute and Stéphanie Staquet
Materials 2025, 18(11), 2644; https://doi.org/10.3390/ma18112644 - 5 Jun 2025
Viewed by 496
Abstract
This research investigates whether metakaolin can be used as a partial substitution for slag to mitigate significant volume changes in alkali-activated slags. Its effect on compressive strength and workability (as well as on isothermal calorimetry, autogenous strain, and coefficient of thermal expansion (CTE)) [...] Read more.
This research investigates whether metakaolin can be used as a partial substitution for slag to mitigate significant volume changes in alkali-activated slags. Its effect on compressive strength and workability (as well as on isothermal calorimetry, autogenous strain, and coefficient of thermal expansion (CTE)) were found to depend on both the type and concentration of the alkaline activator. When using 8 M and 10 M sodium hydroxide (NaOH), increasing the substitution rate increased the compressive strength. With sodium silicate (Na2SiO3), compressive strength decreased as the substitution increased. Isothermal calorimetry revealed metakaolin’s dilution effect at 10% substitution. With 8 M NaOH, a third reaction peak appeared, whose magnitude increased with the substitution rate, while the second peak decreased. The swelling was increased at 10% substitution, followed by constant shrinkage in case of NaOH-activation. Shrinkage was mitigated with Na2SiO3-activation. Higher substitutions with 8 M NaOH resulted in a significant increase in the shrinkage rate and CTE, occurring when the third reaction peak appeared. A 10% substitution delayed the CTE increase but resulted in higher later-age values (dilution effect). The 20% substitution led to a similar final CTE value at 300 h, while 30% substitution resulted in a decrease in CTE after the initial increase. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 4450 KiB  
Article
Effect of Nano-SiO2 on the Hydration, Microstructure, and Mechanical Performances of Solid Waste-Based Cementitious Materials
by Zian Geng, Yu Zhang, Yiwen Zhou, Jiapeng Duan and Zhuqing Yu
Materials 2025, 18(11), 2636; https://doi.org/10.3390/ma18112636 - 4 Jun 2025
Viewed by 441
Abstract
Solid waste-based cementitious materials (SWBC) are composed of steel slag (SS), granulated blast furnace slag (GBFS), fly ash (FA), desulfurization gypsum (DG), and Portland cement (PC). Currently, SWBC holds great potential as a sustainable building material; however, its low early compressive strength and [...] Read more.
Solid waste-based cementitious materials (SWBC) are composed of steel slag (SS), granulated blast furnace slag (GBFS), fly ash (FA), desulfurization gypsum (DG), and Portland cement (PC). Currently, SWBC holds great potential as a sustainable building material; however, its low early compressive strength and volume expansion limit its range of application. Therefore, the main objective of this study is to enhance the mechanical properties and dimensional stability of SWBC by adding nano-SiO2, while also improving its resistance to chloride ions, thereby promoting its use in the field of sustainable building materials. A comprehensive experimental approach integrating mechanical performance testing, shrinkage analysis, and chloride diffusion coefficient evaluation was established, with the testing methods of thermogravimetric analysis-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The study found that adding nano-SiO2 enhanced the nucleation of calcium silicate hydrates (C-S-H) gel in hydrated SWBC, leading to improved compressive strength and reduced chloride permeability when SiO2 addition was 0.5%. When the hydration period extends to 28 days, the modified SWBC achieves a compressive strength of 56 MPa. However, excessive nano-SiO2 (≥1%) inhibited the long-term hydration of SWBC but had no significant effect on the final compressive strength. Full article
Show Figures

Figure 1

Back to TopTop