Current Status and Trends of Low-Temperature Steel Used in Polar Regions
Abstract
:1. Introduction
2. Development and Research Status of Polar Low-Temperature Steel
2.1. Polar Low-Temperature Steel Involved in Key Engineering Projects
2.2. Studies on the Strength and Toughness of Polar Low-Temperature Steel
2.3. Corrosion Resistance of Polar Steel
2.3.1. Microalloying
2.3.2. Coating
2.3.3. Cathodic Protection
3. Existing Problem
3.1. Low-Temperature Toughness
3.2. Corrosion in the Polar Region
4. Suggestions for Development
- In steel production, the control of chemical composition and TMCP parameters is essential for achieving the desired special performance in specific usage environments. For instance, ultrafine grains can be achieved through controlled rolling, controlled cooling, and intricate multi-stage thermoplastic processing. This micro/nano scale structure enhances the low-temperature resistance and strength of low-alloy structural steel. Despite being a widely recognized textbook principle, its significance should not be overlooked.
- Establish a comprehensive database for polar steel to facilitate research in this field. In recent years, extensive data has been produced on the composition and performance of polar steel. However, polar steel lacks a grading system and high-quality dataset. The database should encompass the composition, TMCP parameters, and performance characteristics. Furthermore, standards and specifications for steel plates, profiles, deck machinery, slurry, and core shaft system components for polar vessels need to be developed and refined.
- Combine machine learning with existing polar steel data. Machine learning employs deep learning and other techniques to analyze and model the composition, microstructure, and process parameters of steel materials, facilitating performance prediction and optimization. By integrating various computational models with experimental research, we can enhance our comprehension of the relationship between the microstructural characteristics and properties of pipeline steel.
- Develop the manufacture of green and sustainable polar steel. Only by achieving green sustainability in the production and use of polar steel can we further develop the polar regions with the application of polar steel. Therefore, reducing the impact of polar steel on the polar environment while simultaneously enhancing its necessary performance will be the primary focus of future research on polar steel.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, H.; Hongqiao, H.; Huigen, Y.; Beichen, Z.; Dehong, H.; Yonghua, L.; Zejun, H.; Jianjun, L. Recent progress in Chinese polar upper-atmospheric physics research: Review of research advances supported by the Chinese Arctic and Antarctic expeditions. Adv. Polar Sci. 2016, 27, 219–232. [Google Scholar]
- Wood, K.R.; Bond, N.A.; Danielson, S.L.; Overland, J.E.; Salo, S.A.; Stabeno, P.J.; Whitefield, J. A decade of environmental change in the Pacific Arctic region. Prog. Oceanogr. 2015, 136, 12–31. [Google Scholar] [CrossRef]
- Koivurova, T. Is There a Race to Resources in the Polar Regions. Canada’s and Europe’s Northern Dimensions; Canadian Circumpolar Institute: Edmonton, AB, Canada, 2009; pp. 52–62. [Google Scholar]
- Lopresto, V.; Papa, I.; Langella, A. Residual strength evaluation after impact tests in extreme temperature conditions. New equipment for CAI tests. Compos. Part B Eng. 2017, 127, 44–52. [Google Scholar] [CrossRef]
- Xi, X.; Wang, J.; Chen, L.; Wang, Z. Understanding the role of copper addition in low-temperature toughness of low-carbon, high-strength steel. Metall. Mater. Trans. A 2019, 50, 5627–5639. [Google Scholar] [CrossRef]
- Luo, S.C.; Guo, W.M.; Plucknett, K.; Lin, H.T. Low-temperature densification of high-entropy (Ti, Zr, Nb, Ta, Mo) C—Co composites with high hardness and high toughness. J. Adv. Ceram. 2022, 11, 805–813. [Google Scholar] [CrossRef]
- Su, R.; Chen, J.; Chen, H.; Zhang, Z.; Zhao, X.; Lei, Z.; Wang, D.; Meng, Y.; Zhang, Z. Low-temperature impact toughness of laser–arc hybrid welded low-carbon bainitic steel. J. Mater. Sci. 2023, 58, 12775–12792. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, J.; Zhang, T.; Dorin, T.; Sun, X. Superior low temperature toughness in a newly designed low Mn and low Ni high strength steel. Mater. Sci. Eng. A 2021, 825, 141899. [Google Scholar] [CrossRef]
- Nam, H.; Park, C.; Moon, J.; Na, Y.; Kim, H.; Kang, N. Laser weldability of cast and rolled high-entropy alloys for cryogenic applications. Mater. Sci. Eng. A 2019, 742, 224–230. [Google Scholar] [CrossRef]
- Kromm, A.; Van der Mee, V.; Kannengießer, T.; Kalfsbeek, B. Properties and weldability of modified low transformation temperature filler wires. Weld. World 2015, 59, 413–425. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, B.; Lee, C.; Kang, N. Mechanical properties of one-sided welding for the low-temperature steel using a high-current MAG welding. Weld. World 2023, 67, 2609–2619. [Google Scholar] [CrossRef]
- Rudskoi, A.I.; Parshin, S.G. Advanced trends in metallurgy and weldability of high-strength cold-resistant and cryogenic steels. Metals 2021, 11, 1891. [Google Scholar] [CrossRef]
- Jang, K.C.; Lee, D.G.; Kuk, J.M.; Kim, I.S. Welding and environmental test condition effect in weldability and strength of Al alloy. J. Mater. Process. Technol. 2005, 164, 1038–1045. [Google Scholar] [CrossRef]
- Chang, X.; Zhao, J.; Wang, D.; Chen, H.; Sun, S. Effect of Freezing–Corrosion Treatment on Wear Resistance of Laser-Cladded Cobalt-Based Coatings on EH32 Steel. Tribol. Trans. 2021, 65, 122–136. [Google Scholar] [CrossRef]
- Fujibayashi, A.; Omata, K. JFE Steel’s advanced manufacturing technologies for high performance steel plates. JFE Tech. Rep. 2005, 5, 10–15. [Google Scholar]
- Anon. Launch of research project on ship steel and its application in extremely cold and ultra-low temperature environments. Mar. Equip. Mater. Mark. China 2016, 5, 66–67. [Google Scholar]
- Anon. The first joint laboratory for marine extreme steel materials in China has been established. Environ. Technol. China 2017, 35, 3. [Google Scholar]
- Walters, C.L.; Alvaro, A.; Maljaars, J. The effect of low temperatures on the fatigue crack growth of S460 structural steel. Int. J. Fatigue 2016, 82, 110–118. [Google Scholar] [CrossRef]
- Braun, M.; Ehlers, S. Review of methods for the high-cycle fatigue strength assessment of steel structures subjected to sub-zero temperature. Mar. Struct. 2022, 82, 103153. [Google Scholar] [CrossRef]
- Hu, C.Y.; Dong, H.Y.; Wu, K.M.; Misra, R.D.K.; Zhong, L.; Jin, X.; Li, Q. Effect of Zr-deoxidation on microstructure and mechanical behavior of microalloyed heavy plates with low impurity content. J. Iron Steel Res. Int. 2021, 28, 190–200. [Google Scholar] [CrossRef]
- Christiansen, T.L.; Somers, M.A. Low-temperature surface hardening of stainless steel. Adv. Mater. Process 2013, 171, 52–53. [Google Scholar] [CrossRef]
- Wang, X.T.; Wu, H.B.; Gu, Y.; Xu, L.X.; Zhang, P.C.; Tang, Q.B. Tensile deformation behavior of nickel-free high-manganese austenitic cryogenic-temperature steel. J. Iron Steel Res. Int. 2022, 29, 793–801. [Google Scholar] [CrossRef]
- Lee, S.I.; Hwang, B. Correlation of microstructure with tensile behavior and properties of API X70 pipeline steels subjected to strain aging. J. Iron Steel Res. Int. 2020, 27, 319–324. [Google Scholar] [CrossRef]
- Haušild, P.; Berdin, C.; Bompard, P. Prediction of cleavage fracture for a low-alloy steel in the ductile-to-brittle transition temperature range. Mater. Sci. Eng. A 2005, 391, 188–197. [Google Scholar] [CrossRef]
- Wu, Y.; Bao, C.; Cai, L.; Wang, K.; Liu, X. Estimation of Fracture Toughness for A508-III Steel in Ductile-to-Brittle Transition Region Using a Strain-Energy–Density-Based Fracture Failure Model. Acta Mech. Solida Sin. 2022, 35, 834–841. [Google Scholar] [CrossRef]
- Haušild, P.; Nedbal, I.; Berdin, C.; Prioul, C. The influence of ductile tearing on fracture energy in the ductile-to-brittle transition temperature range. Mater. Sci. Eng. A 2002, 335, 164–174. [Google Scholar] [CrossRef]
- Hu, P.; Yang, F.; Wang, K.S.; Yu, Z.T.; Tan, J.F.; Song, R.; Hu, B.L.; Wang, H.; He, H.C.; Volinsky, A.A. Preparation and ductile-to-brittle transition temperature of the La-TZM alloy plates. Int. J. Refract. Met. Hard Mater. 2015, 52, 131–136. [Google Scholar] [CrossRef]
- Solie, K.E.; Carlson, O.N. Effect of nitrogen on the brittle-ductile transition of chromium. Trans. Metall. Socisity AIME 1964, 230, 480. [Google Scholar]
- Pan, Z.L.; Kecskes, L.J.; Wei, Q.M. The nature behind the preferentially embrittling effect of impurities on the ductility of tungsten. Comput. Mater. Sci. 2014, 93, 104. [Google Scholar] [CrossRef]
- Mutoh, Y.; Ichikawa, K.; Nagata, K.; Takeuchi, M. Effect of rhenium addition on fracture toughness of tungsten at elevated temperature. J. Mater. Sci. 1995, 30, 770. [Google Scholar] [CrossRef]
- Setyawan, W.; Kurtz, R.J. Effects of transition metals on the grain boundary cohesion in tungsten. Scr. Mater. 2012, 66, 558–561. [Google Scholar] [CrossRef]
- Hwang, B.; Kim, S.J. Grain size dependence of ductile-to-brittle transition temperature of a high-nitrogen Cr–Mn austenitic steel. Mater. Sci. Eng. A 2012, 531, 182–185. [Google Scholar] [CrossRef]
- Tsuji, N.; Okuno, S.; Koizumi, Y.; Minamino, Y. Toughness of ultrafine grained ferritic steels fabricated by ARB and annealing process. Mater. Trans. 2004, 45, 2272–2281. [Google Scholar] [CrossRef]
- Li, P.; Wang, X.; Xue, K.M.; Tian, Y.; Wu, Y.C. Microstructure and recrystallization behavior of pure W powder processed by high-pressure torsion. Int. J. Refract. Met. Hard Mater. 2016, 54, 439–444. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Z.; Zhong, M.; Tan, J. Effect of hot rolling on the microstructure and fracture behavior of a bulk fine-grained W–Y2O3 alloy. Mater. Sci. Eng. A 2015, 646, 19–24. [Google Scholar] [CrossRef]
- Deng, H.W.; Xie, Z.M.; Wang, Y.K.; Liu, R.; Zhang, T.; Hao, T.; Wang, X.P.; Fang, Q.F.; Liu, C.S. Mechanical properties and thermal stability of pure W and W-0.5 wt% ZrC alloy manufactured with the same technology. Mater. Sci. Eng. A 2018, 715, 117–125. [Google Scholar] [CrossRef]
- Lang, S.; Yan, Q.; Sun, N.; Zhang, X.; Ge, C. Effects of TiC content on microstructure, mechanical properties, and thermal conductivity of W-TiC alloys fabricated by a wet-chemical method. Fusion Eng. Des. 2017, 121, 366–372. [Google Scholar] [CrossRef]
- Miao, S.; Xie, Z.M.; Zeng, L.F.; Zhang, T.; Wang, X.P.; Fang, Q.F.; Liu, C.S. Mechanical properties, thermal stability and microstructure of fine-grained W-0.5 wt.% TaC alloys fabricated by an optimized multi-step process. Nucl. Mater. Energy 2017, 13, 12–20. [Google Scholar] [CrossRef]
- Ohaeri, E.; Eduok, U.; Szpunar, J. Hydrogen related degradation in pipeline steel: A review. Int. J. Hydrog. Energy 2018, 43, 14584–14617. [Google Scholar] [CrossRef]
- Zhao, M.C.; Yang, K.; Shan, Y. The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel. Mater. Sci. Eng. A 2002, 335, 14–20. [Google Scholar] [CrossRef]
- Xiao, F.R.; Liao, B.; Shan, Y.Y.; Qiao, G.Y.; Zhong, Y.; Zhang, C.; Yang, K. Challenge of mechanical properties of an acicular ferrite pipeline steel. Mater. Sci. Eng. A 2006, 431, 41–52. [Google Scholar] [CrossRef]
- API 5L X70; API Specification 5L. 46th ed. American Petroleum Institute: Washington, DC, USA, 2018.
- Huda, N.; Midawi, A.R.; Gianetto, J.; Lazor, R.; Gerlich, A.P. Influence of martensite-austenite (MA) on impact toughness of X80 line pipe steels. Mater. Sci. Eng. A 2016, 662, 481–491. [Google Scholar] [CrossRef]
- Bayraktar, E.; Kaplan, D. Mechanical and metallurgical investigation of martensite–austenite constituents in simulated welding conditions. J. Mater. Process. Technol. 2004, 153, 87–92. [Google Scholar] [CrossRef]
- Kim, B.C.; Lee, S.; Kim, N.J.; Lee, D.Y. Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds. Metall. Trans. A 1991, 22, 139–149. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, S.; Song, R.; Ren, S.; Zhang, Y.; Sun, X.; Dai, G.; Huo, W.; Zhao, S.; Zhang, C. Effect of V, Nb, and Ti microalloying on low–temperature impact fracture behavior of non–quenched and tempered forged steel. Mater. Sci. Eng. A 2023, 879, 145299. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Godfrey, A.; Kang, J.; Peng, Y.; Wang, T.; Hansen, N.; Huang, X. Cryogenic toughness in a low-cost austenitic steel. Commun. Mater. 2021, 2, 44. [Google Scholar] [CrossRef]
- Xu, Q.; Zhou, J.; Jiang, D.; Yang, X.; Qiu, Z. Improved low-temperature mechanical properties of FH36 marine steel after ultrasonic surface rolling process. J. Alloys Compd. 2023, 937, 168401. [Google Scholar] [CrossRef]
- Omale, J.I.; Ohaeri, E.G.; Tiamiyu, A.A.; Eskandari, M.; Mostafijur, J.M.; Szpunar, J.A. Microstructure, texture evolution and mechanical properties of X70 pipeline steel after different thermomechanical treatments. Mater. Sci. Eng. A 2017, 703, 477–485. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, K.M. New insights into intragranular ferrite in a low-carbon low-alloy steel. Acta Mater. 2009, 57, 3754–3762. [Google Scholar] [CrossRef]
- Hu, J.; Du, L.X.; Wang, J.J.; Xie, H.; Gao, C.R.; Misra, R.D.K. Structure–mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling. Mater. Sci. Eng. A 2013, 585, 197–204. [Google Scholar] [CrossRef]
- Shi, L.; Yan, Z.; Liu, Y.; Zhang, C.; Qiao, Z.; Ning, B.; Li, H. Improved toughness and ductility in ferrite/acicular ferrite dual-phase steel through intercritical heat treatment. Mater. Sci. Eng. A 2014, 590, 7–15. [Google Scholar] [CrossRef]
- Song, R.; Ponge, D.; Raabe, D. Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing. Acta Mater. 2005, 53, 4881–4892. [Google Scholar] [CrossRef]
- Xiong, Z.P.; Saleh, A.A.; Kostryzhev, A.G.; Pereloma, E.V. Strain-induced ferrite formation and its effect on mechanical properties of a dual phase steel produced using laboratory simulated strip casting. J. Alloys Compd. 2017, 721, 291–306. [Google Scholar] [CrossRef]
- Oldfield, J.W. Crevice Corrosion Resistance of Commercial and High-Purity Experimental Stainless Steels in Marine Environments—The Influence of N, Mn, and S. Corrosion 1990, 46, 574–581. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, L.; Sun, W.; Yang, Z.; Wang, S.; Liu, G. Effect of chemical conversion induced by self-corrosion of zinc powders on enhancing corrosion protection performance of zinc-rich coatings. Corros. Sci. 2022, 194, 109942. [Google Scholar] [CrossRef]
- Wranglén, G. Review article on the influence of sulphide inclusions on the corrodibility of Fe and steel. Corros. Sci. 1969, 9, 585–602. [Google Scholar] [CrossRef]
- Thornton, P.A. The influence of nonmetallic inclusions on the mechanical properties of steel: A review. J. Mater. Sci. 1971, 6, 347–356. [Google Scholar] [CrossRef]
- Mills, A.R.; Thewlis, G.; Whiteman, J.A. Nature of inclusions in steel weld metals and their influence on formation of acicular ferrite. Mater. Sci. Technol. 1987, 3, 1051–1061. [Google Scholar] [CrossRef]
- Garrison Jr, W.M.; Wojcieszynski, A.L. A discussion of the effect of inclusion volume fraction on the toughness of steel. Mater. Sci. Eng. A 2007, 464, 321–329. [Google Scholar] [CrossRef]
- Ånmark, N.; Karasev, A.; Jönsson, P.G. The Influence of Microstructure and Non-Metallic Inclusions on the Machinability of Clean Steels. Steel Res. Int. 2017, 88, 1600111. [Google Scholar] [CrossRef]
- Ghosh, A. Thermodynamic evaluation of formation of oxide–sulfide duplex inclusions in steel. ISIJ Int. 2008, 48, 1552–1559. [Google Scholar]
- Wang, X.; Li, X.; Li, Q.; Huang, F.; Li, H.; Yang, J. Control of Stringer Shaped Non-Metallic Inclusions of CaO–Al2O3 System in API X80 Linepipe Steel Plates. Steel Res. Int. 2014, 85, 155–163. [Google Scholar] [CrossRef]
- ASTM E45; Standard Test Methods for Determining the Inclusion Content of Steel. American Petroleum Institute: Washington, DC, USA, 2018.
- Ukadgaonker, V.G.; Babu, R.S. Review of work related to ‘leak-before-break’assessment. Int. J. Press. Vessel. Pip. 1996, 69, 135–148. [Google Scholar] [CrossRef]
- Zong, C.; Zhu, G.; Mao, W. Effect of crystallographic texture on the anisotropy of Charpy impact behavior in pipeline steel. Mater. Sci. Eng. A 2013, 563, 1–7. [Google Scholar] [CrossRef]
- Yang, X.L.; Xu, Y.B.; Tan, X.D.; Wu, D. Influences of crystallography and delamination on anisotropy of Charpy impact toughness in API X100 pipeline steel. Mater. Sci. Eng. A 2014, 607, 53–62. [Google Scholar] [CrossRef]
- Beltran-Zuñiga, M.A.; González-Velázquez, J.L.; Rivas-López, D.I.; Dorantes-Rosales, H.J.; Hernández-Santiago, F. Effect of microstructure and crystallographic texture on the toughness anisotropy of API 5L X46 steel. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 749–761. [Google Scholar] [CrossRef]
- Gervasyev, A.; Olalla, V.C.; Sidor, J.; Mouriño, N.S.; Kestens, L.A.; Petrov, R.H. An approach to microstructure quantification in terms of impact properties of HSLA pipeline steels. Mater. Sci. Eng. A 2016, 677, 163–170. [Google Scholar] [CrossRef]
- Joo, M.S.; Suh, D.W.; Bae, J.H.; Mouriño, N.S.; Petrov, R.; Kestens, L.A.I.; Bhadeshia, H.K.D.H. Experiments to separate the effect of texture on anisotropy of pipeline steel. Mater. Sci. Eng. A 2012, 556, 601–606. [Google Scholar] [CrossRef]
- Gervasyev, A.; Petrov, R.; Pyshmintsev, I.; Huo, C.; Barbaro, F. Quantification of Splitting in X80 Pipeline Steel. In Proceedings of the 2018 12th International Pipeline Conference. Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining, Calgary, AB, Canada, 24–28 September 2018; American Society of Mechanical Engineers: New York, NY, USA, 2018; p. V003T05A019. [Google Scholar]
- Chang, X.; Li, M.; Tang, S.; Shi, L.; Chen, X.; Niu, S.; Zhu, X.; Wang, D.; Sun, S. Superhydrophobic micro-nano structured PTFE/WO3 coating on low-temperature steel with outstanding anti-pollution, anti-icing, and anti-fouling performance. Surf. Coat. Technol. 2022, 434, 128214. [Google Scholar] [CrossRef]
- Kuznetsov, G.; Islamova, A.; Orlova, E.; Ivashutenko, A.; Shanenkov, I.; Zykov, I.; Feoktistov, D. Influence of roughness on polar and dispersed components of surface free energy and wettability properties of copper and steel surfaces. Surf. Coat. Technol. 2021, 422, 127518. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Cheng, L.; Liu, J.; Wu, K. Role of inclusion and microstructure on corrosion initiation and propagation of weathering steels in marine environment. J. Mater. Res. Technol. 2021, 10, 306–321. [Google Scholar] [CrossRef]
- Wang, D.; Bierwagen, G.P. Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 2009, 64, 327–338. [Google Scholar] [CrossRef]
- Lukovits, I.; Kalman, E.; Zucchi, F. Corrosion inhibitors—Correlation between electronic structure and efficiency. Corrosion 2001, 57, 3–8. [Google Scholar] [CrossRef]
- Ceschini, L.; Chiavari, C.; Lanzoni, E.; Martini, C. Low-temperature carburised AISI 316L austenitic stainless steel: Wear and corrosion behaviour. Mater. Des. 2012, 38, 154–160. [Google Scholar] [CrossRef]
- Jing, J.Q.; Guo, J.; Li, B.; Jia, S.J.; Ren, Y. Relationship between microstructure and corrosion behavior of high-grade pipeline steel in a low-temperature environment. J. Iron Steel Res. Int. 2021, 28, 1037–1046. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, B.K.; Nam, D.G.; Kim, M.H. Effect of Nickel Contents on Fatigue Crack Growth Rate and Fracture Toughness for Nickel Alloy Steel. Metals 2022, 12, 173. [Google Scholar] [CrossRef]
- Cui, Z.; Liu, Z.; Wang, L.; Du, C.; Li, X. Effect of pH Value on the Crack Growth Behavior of X70 Pipeline Steel in the Dilute Bicarbonate Solutions. Mater. Trans. 2015, 56, 777–780. [Google Scholar] [CrossRef]
- Sun, M.Y.; Wang, X.L.; Wang, Z.Q.; Wang, X.M.; Li, X.C.; Yan, L.; Misra, R.D.K. The critical impact of intercritical deformation on variant pairing of bainite/martensite in dual-phase steels. Mater. Sci. Eng. A 2020, 771, 138668. [Google Scholar] [CrossRef]
- Zong, Y.; Liu, C.M. Microstructure, mechanical properties, and corrosion behavior of ultra-low carbon bainite steel with different niobium content. Materials 2021, 14, 311. [Google Scholar] [CrossRef]
- Jonšta, P.; Jonšta, Z.; Brožová, S.; Ingaldi, M.; Pietraszek, J.; Klimecka-Tatar, D. The effect of rare earth metals alloying on the internal quality of industrially produced heavy steel forgings. Materials 2021, 14, 5160. [Google Scholar] [CrossRef]
- Kirkland, N.T.; Lespagnol, J.; Birbilis, N.; Staiger, M.P. A survey of bio-corrosion rates of magnesium alloy. Corros. Sci. 2010, 52, 287–291. [Google Scholar] [CrossRef]
- Sun, H.; Liu, L.; Li, Y.; Wang, F. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel. J. Electrochem. Soc. 2013, 160, C89. [Google Scholar] [CrossRef]
- Chen, D.C.; Wu, J.F.; Liang, Y.Q.; Ye, S.L.; Li, W.F. Preparation of cerium oxide based environment-friendly chemical conversion coating on magnesium alloy with additives. Trans. Nonferrous Met. Soc. China 2011, 21, 1905–1910. [Google Scholar] [CrossRef]
- Presuel-Moreno, F.; Jakab, M.A.; Tailleart, N.; Goldman, M.; Scully, J.R. Corrosion-resistant metallic coatings. Mater. Today 2008, 11, 14–23. [Google Scholar] [CrossRef]
- Popoola, A.P.I.; Olorunniwo, O.E.; Ige, O.O. Corrosion resistance through the application of anti-corrosion coatings. Dev. Corros. Prot. 2014, 13, 241–270. [Google Scholar]
- Bij de Vaate, I.; Vasulkar, A.N.; Slobbe, D.C.; Verlaan, M. The influence of Arctic landfast ice on seasonal modulation of the M2 tide. J. Geophys. Res. Ocean. 2021, 126, e2020JC016630. [Google Scholar] [CrossRef]
- Brown, R.H.; Mears, R.B. Cathodic protection. Trans. Electrochem. Soc. 1942, 81, 455. [Google Scholar] [CrossRef]
- Pedeferri, P. Cathodic protection and cathodic prevention. Constr. Build. Mater. 1996, 10, 391–402. [Google Scholar] [CrossRef]
- Thompson, A.A.; Wood, J.L.; Palombo, E.A.; Green, W.K.; Wade, S.A. From laboratory tests to field trials: A review of cathodic protection and microbially influenced corrosion. Biofouling 2022, 38, 298–320. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Kang, K.B.; Jonas, J.J. The dynamic, static and metadynamic recrystallization of a Nb-microalloyed steel. ISIJ Int. 2001, 41, 63–69. [Google Scholar] [CrossRef]
- Elwazri, A.M.; Wanjara, P.; Yue, S. Dynamic recrystallization of austenite in microalloyed high carbon steels. Mater. Sci. Eng. A 2003, 339, 209–215. [Google Scholar] [CrossRef]
- Uranga, P.; Fernandez, A.I.; Lopez, B.; Rodriguez-Ibabe, J.M. Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite. Mater. Sci. Eng. A 2003, 345, 319–327. [Google Scholar] [CrossRef]
- Zahiri, S.H.; Byon, S.M.; Kim, S.I.; Lee, Y.; Hodgson, P.D. Static and metadynamic recrystallization of interstitial free steels during hot deformation. ISIJ Int. 2004, 44, 1918–1923. [Google Scholar] [CrossRef]
- Reitz, A.; Grydin, O.; Schaper, M. Influence of thermomechanical processing on the microstructural and mechanical properties of steel 22MnB5. Mater. Sci. Eng. A 2022, 838, 142780. [Google Scholar] [CrossRef]
- Shanmugam, S.; Misra, R.D.K.; Hartmann, J.; Jansto, S.G. Microstructure of high strength niobium-containing pipeline steel. Mater. Sci. Eng. A 2006, 441, 215–229. [Google Scholar] [CrossRef]
- You, X.C.; Zhuang, Z.; Huo, C.Y.; Zhuang, C.J.; Feng, Y.R. Crack arrest in rupturing steel gas pipelines. Int. J. Fract. 2003, 123, 1–14. [Google Scholar] [CrossRef]
- Zhang, J.M.; Sun, W.H.; Sun, H. Mechanical properties and microstructure of X120 grade high strength pipeline steel. J. Iron Steel Res. Int. 2010, 17, 63–67. [Google Scholar] [CrossRef]
- Liu, D.; Dong, Y.; Li, R.; Jiang, J.; Li, X.; Wang, Z.; Zuo, X. Evaluation of mechanical properties and microstructure of X70 pipeline steel with strain-based design. Metals 2022, 12, 1616. [Google Scholar] [CrossRef]
- Qiao, G.Y.; Xiao, F.R.; Zhang, X.B.; Cao, Y.B.; Bo, L.I.A.O. Effects of contents of Nb and C on hot deformation behaviors of high Nb X80 pipeline steels. Trans. Nonferrous Met. Soc. China 2009, 19, 1395–1399. [Google Scholar] [CrossRef]
- Kim, Y.M.; Kim, S.K.; Lim, Y.J.; Kim, N.J. Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels. ISIJ Int. 2002, 42, 1571–1577. [Google Scholar] [CrossRef]
- Angst, U.M. A critical review of the science and engineering of cathodic protection of steel in soil and concrete. Corrosion 2019, 75, 1420–1433. [Google Scholar] [CrossRef]
- McMahon, M.E.; Korjenic, A.; Burns, J.T.; Scully, J.R. Mechanistic Insight into Al-Zn, Mg, and Al-Mg-Rich Primer Design for Enhanced Cathodic Prevention on Sensitized Al-Mg Alloys. Corrosion 2023, 79, 647–664. [Google Scholar] [CrossRef] [PubMed]
- Bigot, M.; Hawker, D.W.; Cropp, R.; Muir, D.C.; Jensen, B.; Bossi, R.; Bengtson Nash, S.M. Spring melt and the redistribution of organochlorine pesticides in the sea-ice environment: A comparative study between Arctic and Antarctic regions. Environ. Sci. Technol. 2017, 51, 8944–8952. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.Y.; Kim, M.H. Corrosion behaviour of welded low-carbon steel in the Arctic marine environment. RSC Adv. 2018, 8, 30155–30162. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y. The Research on Resistance Performance of Ship in Ice. Master’s Thesis, Harbin Engineering University, Harbin, China, 2016. [Google Scholar]
- Campbell, K.; Matero, I.; Bellas, C.; Turpin-Jelfs, T.; Anhaus, P.; Graeve, M.; Fripiat, F.; Tranter, M.; Landy, J.C.; Leu, E.; et al. Monitoring a changing Arctic: Recent advancements in the study of sea ice microbial communities. Ambio 2022, 51, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Kleinteich, J.; Hildebrand, F.; Bahram, M.; Voigt, A.Y.; Wood, S.A.; Jungblut, A.D.; Küpper, F.C.; Queasada, A.; Camacho, A.; Pearce, D.A.; et al. Pole-to-pole connections: Similarities between Arctic and Antarctic microbiomes and their vulnerability to environmental change. Front. Ecol. Evol. 2017, 5, 137. [Google Scholar] [CrossRef]
- Garnett, J.; Halsall, C.; Vader, A.; Joerss, H.; Ebinghaus, R.; Leeson, A.; Wynn, P.M. High concentrations of perfluoroalkyl acids in Arctic seawater driven by early thawing sea ice. Environ. Sci. Technol. 2021, 55, 11049–11059. [Google Scholar] [CrossRef] [PubMed]
- Shibin, S.; Xin, W.; Jian, K.; Xiong, H.; Dongsheng, W.; Xueting, C.; Yansheng, Y. Erosion-Wear Resistance of DH32 Steel under Ice Load in Simulated Polar Ice-Breaking Environment. Tribology 2021, 41, 493–502. [Google Scholar]
- Ray, R.D. On seasonal variability of the M2 tide. Ocean. Sci. 2022, 18, 1073–1079. [Google Scholar] [CrossRef]
- Hua, W.; Sun, R.; Wang, X.; Zhang, Y.; Li, J.; Qiu, R.; Gao, Y. Corrosion of Q235 carbon steel induced by sulfate-reducing bacteria in groundwater: Corrosion behavior, corrosion product, and microbial community structure. Environ. Sci. Pollut. Res. 2024, 31, 4269–4279. [Google Scholar] [CrossRef]
- Kulikov, M.E.; Medvedev, I.P.; Kondrin, A.T. Features of seasonal variability of tidal sea-level oscillations in the Russian Arctic Seas. Russ. Meteorol. Hydrol. 2020, 45, 411–421. [Google Scholar] [CrossRef]
- Drews, R.; Wild, C.T.; Marsh, O.J.; Rack, W.; Ehlers, T.A.; Neckel, N.; Helm, V. Grounding-Zone Flow Variability of Priestley Glacier, Antarctica, in a Diurnal Tidal Regime. Geophys. Res. Lett. 2021, 48, e2021GL093853. [Google Scholar] [CrossRef]
- Gong, K.; Wu, M.; Liu, G. Comparative study on corrosion behaviour of rusted X100 steel in dry/wet cycle and immersion environments. Constr. Build. Mater. 2020, 235, 117440. [Google Scholar] [CrossRef]
- Irfan, O.M.; Omar, H.M. Influence of grain refinement by ECAP on mechanical and erosion corrosion properties of AISI 4130 steel: Experimental and prediction approach. Metall. Mater. Trans. A 2019, 50, 4232–4244. [Google Scholar] [CrossRef]
- Nissan, A.; Alcolombri, U.; Peleg, N.; Galili, N.; Jimenez-Martinez, J.; Molnar, P.; Holzner, M. Global warming accelerates soil heterotrophic respiration. Nat. Commun. 2023, 14, 3452. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Kim, D.; Lee, H.G.; Park, J.Y.; Kim, W.J. Factors affecting the hydrothermal corrosion behavior of chemically vapor deposited silicon carbides. J. Nucl. Mater. 2019, 518, 350–356. [Google Scholar] [CrossRef]
- Murray, A.E.; Grzymski, J.J. Diversity and genomics of Antarctic marine micro-organisms. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 2259–2271. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, C.; Rizzo, C.; Lo Giudice, A.; Saggiomo, M. Physiological and molecular responses to main environmental stressors of microalgae and bacteria in polar marine environments. Microorganisms 2020, 8, 1957. [Google Scholar] [CrossRef]
- Marx, J.C.; Collins, T.; D’Amico, S.; Feller, G.; Gerday, C. Cold-adapted enzymes from marine Antarctic microorganisms. Mar. Biotechnol. 2007, 9, 293–304. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Q.; Xie, Y.; Hu, F.; Hu, C. Current Status and Trends of Low-Temperature Steel Used in Polar Regions. Materials 2024, 17, 3117. https://doi.org/10.3390/ma17133117
Xiao Q, Xie Y, Hu F, Hu C. Current Status and Trends of Low-Temperature Steel Used in Polar Regions. Materials. 2024; 17(13):3117. https://doi.org/10.3390/ma17133117
Chicago/Turabian StyleXiao, Qiaoling, Yaozhou Xie, Feng Hu, and Chengyang Hu. 2024. "Current Status and Trends of Low-Temperature Steel Used in Polar Regions" Materials 17, no. 13: 3117. https://doi.org/10.3390/ma17133117
APA StyleXiao, Q., Xie, Y., Hu, F., & Hu, C. (2024). Current Status and Trends of Low-Temperature Steel Used in Polar Regions. Materials, 17(13), 3117. https://doi.org/10.3390/ma17133117