Effect of the CAD/CAM Milling Protocol on the Fracture Behavior of Zirconia Monolithic Crowns
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Topography Analysis
3.2. Mechanical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blatz, M.B.; Conejo, J. The Current State of Chairside Digital Dentistry and Materials. Dent. Clin. N. Am. 2019, 63, 175–197. [Google Scholar] [CrossRef] [PubMed]
- Rekow, E.D. Digital dentistry: The new state of the art—Is it disruptive or destructive? Dent. Mater. 2020, 36, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lawn, B.R. Novel Zirconia Materials in Dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lawn, B.R. Evaluating dental zirconia. Dent. Mater. 2019, 35, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Borba, M.; Cesar, P.F.; Griggs, J.A.; Della Bona, A. Adaptation of all-ceramic fixed partial dentures. Dent. Mater. 2011, 27, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Camargo, B.; Willems, E.; Jacobs, W.; Van Landuyt, K.; Peumans, M.; Zhang, F.; Vleugels, J.; Van Meerbeek, B. 3D printing and milling accuracy influence full-contour zirconia crown adaptation. Dent. Mater. 2022, 38, 1963–1976. [Google Scholar] [CrossRef] [PubMed]
- Corazza, P.H.; de Castro, H.L.; Feitosa, S.A.; Kimpara, E.T.; Della Bona, A. Influence of CAD-CAM diamond bur deterioration on surface roughness and maximum failure load of Y-TZP-based restorations. Am. J. Dent. 2015, 28, 95–99. [Google Scholar] [PubMed]
- Denry, I.L.; Holloway, J.A. Microstructural and crystallographic surface changes after grinding zirconia-based dental ceramics. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 76, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Fraga, S.; Amaral, M.; Bottino, M.A.; Valandro, L.F.; Kleverlaan, C.J.; May, L.G. Impact of machining on the flexural strength of glass and polycrystalline CAD/CAM ceramics. Dent. Mater. 2017, 33, 1286–1297. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, H.; Son, S.A.; Hong, S.J.; Park, J.K. Evaluation of the intaglio surface trueness and fit of zirconia crowns fabricated using different machining strategies with a chairside CAD/CAM system. Int. J. Comput. Dent. 2023, 27, 191–198. [Google Scholar]
- Li, R.; Chen, H.; Wang, Y.; Sun, Y. Performance of stereolithography and milling in fabricating monolithic zirconia crowns with different finish line designs. J. Mech. Behav. Biomed. Mater. 2021, 115, 104255. [Google Scholar] [CrossRef] [PubMed]
- Romanyk, D.L.; Martinez, Y.T.; Veldhuis, S.; Rae, N.; Guo, Y.; Sirovica, S.; Fleming, G.J.P.; Addison, O. Strength-limiting damage in lithium silicate glass-ceramics associated with CAD-CAM. Dent. Mater. 2019, 35, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Alao, A.R.; Stoll, R.; Song, X.F.; Miyazaki, T.; Hotta, Y.; Shibata, Y.; Yin, L. Surface quality of yttria-stabilized tetragonal zirconia polycrystal in CAD/CAM milling, sintering, polishing and sandblasting processes. J. Mech. Behav. Biomed. Mater. 2017, 65, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Pilecco, R.O.; Machry, R.V.; Baldi, A.; Tribst, J.P.M.; Sarkis-Onofre, R.; Valandro, L.F.; Kleverlaan, C.J.; Scotti, N.; Pereira, G.K.R. Influence of CAD-CAM milling strategies on the outcome of indirect restorations: A scoping review. J. Prosthet. Dent. 2024, 131, 811.e1–811.e10. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chen, H.; Wang, Y.; Zhou, Y.; Shen, Z.; Sun, Y. Three-dimensional trueness and margin quality of monolithic zirconia restorations fabricated by additive 3D gel deposition. J. Prosthodont. Res. 2020, 64, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Ottoni, R.; Marocho, S.M.S.; Griggs, J.A.; Borba, M. CAD/CAM versus 3D-printing/pressed lithium disilicate monolithic crowns: Adaptation and fatigue behavior. J. Dent. 2022, 123, 104181. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Valcanaia, A.; Neiva, G.; Mehl, A.; Fasbinder, D. Influence of Different CAM Strategies on the Fit of Partial Crown Restorations: A Digital Three-dimensional Evaluation. Oper. Dent. 2018, 43, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Ferrini, F.; Paolone, G.; Di Domenico, G.L.; Pagani, N.; Gherlone, E.F. SEM Evaluation of the Marginal Accuracy of Zirconia, Lithium Disilicate, and Composite Single Crowns Created by CAD/CAM Method: Comparative Analysis of Different Materials. Materials 2023, 16, 2413. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.R.; Cesar, P.F.; Scherrer, S.S.; Della Bona, A.; van Noort, R.; Tholey, M.; Vichi, A.; Lohbauer, U. ADM guidance-ceramics: Fatigue principles and testing. Dent. Mater. 2017, 33, 1192–1204. [Google Scholar] [CrossRef]
- Lohbauer, U.; Belli, R.; Cune, M.S.; Schepke, U. Fractography of clinically fractured, implant-supported dental computer-aided design and computer-aided manufacturing crowns. SAGE Open Med. Case Rep. 2017, 5, 2050313X17741015. [Google Scholar] [CrossRef]
- Belli, R.; Scherrer, S.S.; Lohbauer, U. Report on fractures of trilayered all-ceramic fixed dental prostheses. Case Stud. Eng. Fail. Anal. 2016, 7, 71–79. [Google Scholar] [CrossRef]
- Borba, M.; Okamoto, T.K.; Zou, M.; Kaizer, M.R.; Zhang, Y. Damage sensitivity of dental zirconias to simulated occlusal contact. Dent. Mater. 2020, 37, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent. Mater. 2016, 32, e327–e337. [Google Scholar] [CrossRef] [PubMed]
- Lohbauer, U.; Kramer, N.; Petschelt, A.; Frankenberger, R. Correlation of in vitro fatigue data and in vivo clinical performance of a glassceramic material. Dent. Mater. 2008, 24, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Borba, M.; Duan, Y.; Griggs, J.A.; Cesar, P.F.; Della Bona, A. Effect of ceramic infrastructure on the failure behavior and stress distribution of fixed partial dentures. Dent. Mater. 2015, 31, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.; Borba, M.; Mallmann, F.; Fornari, F.; Della Bona, A. Influences of Screw Access Hole and Mechanical Cycling on the Fracture Load of Implant-Supported Crowns. Int. J. Prosthodont. 2019, 32, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Salazar Marocho, S.M.; Studart, A.R.; Bottino, M.A.; Bona, A.D. Mechanical strength and subcritical crack growth under wet cyclic loading of glass-infiltrated dental ceramics. Dent. Mater. 2010, 26, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Borba, M.; Cesar, P.F.; Griggs, J.A.; Della Bona, A. Step-stress analysis for predicting dental ceramic reliability. Dent. Mater. 2013, 29, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Mosele, J.C.; Oliveira, A.R.; Pizzolatto, G.; Benetti, P.; Borba, M. Failure behavior of zirconia crowns subjected to air abrasion with different particle sizes. Braz. Dent. J. 2023, 34, 71–79. [Google Scholar] [CrossRef]
- Borba, M.; de Araujo, M.D.; Fukushima, K.A.; Yoshimura, H.N.; Cesar, P.F.; Griggs, J.A.; Della Bona, A. Effect of the microstructure on the lifetime of dental ceramics. Dent. Mater. 2011, 27, 710–721. [Google Scholar] [CrossRef]
- Elsayed, A.; Meyer, G.; Wille, S.; Kern, M. Influence of the yttrium content on the fracture strength of monolithic zirconia crowns after artificial aging. Quintessence Int. 2019, 50, 344–348. [Google Scholar] [PubMed]
- Nordahl, N.; Vult von Steyern, P.; Larsson, C. Fracture strength of ceramic monolithic crown systems of different thickness. J. Oral. Sci. 2015, 57, 255–261. [Google Scholar] [CrossRef] [PubMed]
Material | Brand (Manufacturer) | Composition * | Lot Number |
---|---|---|---|
3 mol% yttria partially stabilized zirconia (3Y-PSZ) | VITA YZ HT White (VITA Zahnfabrik, Bad Säckingen, Germany) | ZrO2 90.4–94.5%; Y2O3 4–6%; HfO2 1.5–2.5%; Al2O3 0–0.3%; Er2O3 0–0.5%; Fe2O3 0–0.3% | 66760 |
Hydrofluoric acid | Condac Porcelana (FGM, Joinville, SC, Brazil) | 10% hydrofluoric acid, water, thickener, surfactant, coloring | 040522 040822 |
Silane coupling agent | Prosil (FGM, Joinville, SC, Brazil) | Ethanolic solution of hydrolyzed 3-Methacryloxypropyltrimethoxysilane | 040222 |
Adhesive system | ED Primer II A + B (Kuraray, Tokyo, Japan) | Liquid A: 2-Hydroxyethyl methacrylate (HEMA), 10-Methacryloyloxydecyl dihydrogen phosphate (MDP), water, N-Methacryloyl-5-aminosalicylic acid (5-NMSA), accelerators liquid B: N-Methacryloyl-5-aminosalicylic acid (5-NMSA), water, catalysts, accelerators | A40061 A5006 |
Resin cement | Panavia F 2.0 (Kuraray, Tokyo, Japan) | Paste A: MDP, hydrophobic aromatic dimethacrylate, hydrophobic aliphatic dimethacrylate, hydrophilic aliphatic dimethacrylate, silanated silica filler, silanated colloidal silica, dl-Camphorquinone, catalysts, initiators Paste B: Hydrophobic aromatic dimethacrylate, hydrophobic aliphatic dimethacrylate, hydrophilic aliphatic dimethacrylate, silanated barium glass filler, surface-treated sodium fluoride, catalysts, accelerators, pigments | A50258 A60114 |
Diamond-coated burs | Bur 0.5–1.0–2.5 ZrO2 DC (Dentsply Sirona, Bensheim, Germany) | SIR031-18 |
Group | Protocol | Mode | Time per Crown |
---|---|---|---|
S | Slow | Refined | 25 min |
N | Normal | Conventional | 18 min |
F | Fast | Fast | 12 min |
Group | L0 * | L0—95% CI | m * | m—95% CI | L5% | L5%—95% CI |
---|---|---|---|---|---|---|
S | 4540 a | 4194–4889 | 8.1 ab | 5.1–11.7 | 3286 a | 2884–3543 |
N | 3706 b | 3337–4091 | 6.1 b | 3.8–8.7 | 2270 b | 1627–2758 |
F | 3943 b | 3790–4091 | 16.3 a | 10.1–24.1 | 3144 ab | 2451–3648 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, A.R.; Ziglioli, N.U.; Marocho, S.M.S.; Satterthwaite, J.; Borba, M. Effect of the CAD/CAM Milling Protocol on the Fracture Behavior of Zirconia Monolithic Crowns. Materials 2024, 17, 2981. https://doi.org/10.3390/ma17122981
Oliveira AR, Ziglioli NU, Marocho SMS, Satterthwaite J, Borba M. Effect of the CAD/CAM Milling Protocol on the Fracture Behavior of Zirconia Monolithic Crowns. Materials. 2024; 17(12):2981. https://doi.org/10.3390/ma17122981
Chicago/Turabian StyleOliveira, Andressa Restani, Natalia Ulmi Ziglioli, Susana M. Salazar Marocho, Julian Satterthwaite, and Marcia Borba. 2024. "Effect of the CAD/CAM Milling Protocol on the Fracture Behavior of Zirconia Monolithic Crowns" Materials 17, no. 12: 2981. https://doi.org/10.3390/ma17122981
APA StyleOliveira, A. R., Ziglioli, N. U., Marocho, S. M. S., Satterthwaite, J., & Borba, M. (2024). Effect of the CAD/CAM Milling Protocol on the Fracture Behavior of Zirconia Monolithic Crowns. Materials, 17(12), 2981. https://doi.org/10.3390/ma17122981