Recent Advances in Corrosion Inhibition of Bonded NdFeB Magnets
Abstract
1. Introduction
2. Scientific Literature
2.1. Modification of the Magnetic Powder
2.2. Adhesive Coatings
2.3. Deposition of Adhesive by Electrophoresis
2.4. Deposition of a Composite Coating
2.5. Deposition of Metallic Coatings
3. Patent Literature
3.1. Deposition of a Metallic Film
3.2. Deposition of a Composite Film
3.3. Surface Oxidation or Nitriding
3.4. More Complex Strucures
4. Discussion and Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brown, D.N. Fabrication, Processing Technologies, and New Advances for RE-Fe-B Magnets. IEEE Trans. Magn. 2016, 52, 2101209. [Google Scholar] [CrossRef]
- Wang, H.; Lamichhane, T.N.; Paranthaman, M.P. Review of additive manufacturing of permanent magnets for electrical machines: A prospective on wind turbine. Mater. Today Phys. 2022, 24, 100675. [Google Scholar] [CrossRef]
- Li, L.; Jones, K.; Sales, B.; Pries, J.L.; Nlebedim, I.C.; Jin, K.; Bei, H.; Post, B.K.; Kesler, M.S.; Rios, O.; et al. Fabrication of highly dense isotropic Nd-Fe-B nylon bonded magnets via extrusion-based additive manufacturing. Addit. Manuf. 2018, 21, 495–500. [Google Scholar] [CrossRef]
- Hemrick, J.; Lara-Curzio, E.; Liu, K.; Ma, B.-M. Mechanical properties of thermally cycled nylon bonded Nd-Fe-B permanent magnets. J. Mater. Sci. 2004, 39, 6509–6522. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, J.; Cheng, X.; Cai, W.; Qiao, L.; Che, S. Surface Modification and Refinement of Nd–Fe–B Magnetic Powder Using ITDT and Phosphoric Acid. JOM 2021, 73, 3941–3949. [Google Scholar] [CrossRef]
- ISO 9227:2017(E); Corrosion Tests in Artificial Atmospheres—Salt Spray Tests. ISO: Geneva, Switzerland, 2017.
- Sagawa, M.; Fujimura, S.; Togawa, N.; Yamamoto, H.; Matsuura, Y. New material for permanent magnets on a base of Nd and Fe (invited). J. Appl. Phys. 1984, 55, 2083–2087. [Google Scholar] [CrossRef]
- Croat, J.J.; Herbst, J.F.; Lee, R.W.; Pinkerton, F.E. Pr-Fe and Nd-Fe-based materials: A new class of high-performance permanent magnets (invited). J. Appl. Phys. 1984, 55, 2078–2082. [Google Scholar] [CrossRef]
- Shimba, K.; Yamazaki, M.; Horikawa, T.; Sugimoto, S.; Mitarai, H. Effect of Phosphate Treatment on the Corrosion Resistance of Nd–Fe–B Anisotropic Magnetic Powder. IEEE Trans. Magn. 2023, 59, 9201104. [Google Scholar] [CrossRef]
- Paranthaman, M.P.; Yildirim, V.; Lamichhane, T.N.; Begley, B.A.; Post, B.K.; Hassen, A.A.; Sales, B.C.; Gandha, K.; Nlebedim, I.C. Additive Manufacturing of Isotropic NdFeB PPS Bonded Permanent Magnets. Materials 2020, 13, 3319. [Google Scholar] [CrossRef] [PubMed]
- Webster, H.F.; Wightman, J.P. Effects of oxygen and ammonia plasma treatment on polyphenylene sulfide thin films and their interaction with epoxy adhesive. J. Adhes. Sci. Technol. 1991, 5, 93–106. [Google Scholar] [CrossRef]
- Gandha, K.; Paranthaman, M.P.; Wang, H.; Liu, X.; Nlebedim, I.C. Thermal stability of anisotropic bonded magnets prepared by additive manufacturing. J. Am. Ceram. Soc. 2022, 106, 166–171. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, L.; Sun, Y.; Jiang, N.; Guan, C.; Fang, X.; Liu, J. Preparation and corrosion resistance of epoxy resin coating for bonded NdFeB magnet. Prog. Org. Coat. 2022, 173, 107180. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Yang, L.; Su, L.; Jia, M.; Chen, Y.; Fang, X.; Liu, J. Preparation and Anticorrosion Performance of Double-Layer Epoxy Resin Coatings on Bonded NdFeB Magnets. J. Mater. Eng. Perform. 2023. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Yang, L.; Ren, R.; Chen, Y.; Dong, B.; Liu, J.; Fang, X.; Gao, Q. The Preparation and Properties of ZnAl Coating for Ring-Shaped Bonded NdFeB Magnet with High Corrosion Resistance. J. Mater. Eng. Perform. 2021, 31, 1003–1008. [Google Scholar] [CrossRef]
- Gao, Y.; Bai, Y.; Zhu, H.; Liang, W.; Liu, Q.; Dong, H.; Jia, R.; Ma, W. Corrosion Resistance, Mechanical and Magnetic Properties of Cold-Sprayed Al Coating on Sintered NdFeB Magnet. J. Therm. Spray Technol. 2021, 30, 2117–2127. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, N.; Sun, Y.; Yang, L.; Guan, C.; Zhang, E.; Fang, X.; Liu, J. Structure and Corrosion Resistance Characteristics of ZnAl/EP Coating on Bonded NdFeB Magnet. J. Mater. Eng. Perform. 2022, 32, 5475–5482. [Google Scholar] [CrossRef]
- Fujimura, S.; Sagawa, M.; Matsuura, Y. Isotropic Permanet Magnet and Manufacture Thereof. JPH0467322B2, 19 November 1984. [Google Scholar]
- Croat, J.J. High Energy Product Rare Earth-Iron Magnet Alloys. U.S. Patent 4802931A, 24 June 1983. [Google Scholar]
- Lee, R.W.; Croat, J.J. Bonded Rare Earth-Iron Magnets. AU571497B2, 26 August 1983. [Google Scholar]
- Inoue, K. Production of Magnet. JPS6314827A, 4 July 1986. [Google Scholar]
- Rozendaal, E. Method and Apparatus for the Manufacture of Rare Earth Transition Metal Alloy Magnets. GB2196479A, 20 October 1986. [Google Scholar]
- Hiroyoshi, H.; Wakechigai, T.; Koyama, Y. Single Magnetic Domain Grain Magnet and Manufacture Thereof, and Manufacture of Metallic Binedr Anisotropic Magnet. JPS6481302A, 24 September 1987. [Google Scholar]
- Shi, C.; Zhai, Y.; Guo, B.; Mi, Z. NdFeB Double-Plating Surface Protection Method. CN117248212A, 6 September 2023. [Google Scholar]
- Brown, D.; Ma, B.-M.; Chen, Z. Developments in the Processing and Properties of NdFeb-Type Permanent Magnets. J. Magn. Magn. Mater. 2002, 248, 432–440. [Google Scholar] [CrossRef]
- Cvelbar, U.; Mozetič, M. Method for Improving the Electrical Connection Properties of the Surface of a Product Made from a Polymer-Matrix Composite. EP1828434B1, 16 January 2008. [Google Scholar]
- Xu, G.; Lee, S.; Lyu, J.; Wu, Y.; Wang, D.; Cui, J.; Shen, W. Preparation Method of Neodymium Iron Boron Surface Modified Hexagonal Boron Nitride Reinforced Epoxy Composite Coating. CN116285578A, 24 March 2023. [Google Scholar]
- Shaochun, T.; Hongbin, L.; Chenglong, L.; Weiwei, T. Preparation Method of High-Wear-Resistance and High-Corrosion-Resistance Protective Coating on Neodymium Iron Boron Surface. CN114381786B, 31 October 2023. [Google Scholar]
- Jinhe, W.; Liyi, S.; Di, Z.; Xiong, Z.; Lin, M. Method for Modifying Boron Nitride Nanosheet Surface with Polydopamine. CN106554514B, 23 October 2018. [Google Scholar]
- Yan, M.; Jin, J.; Chen, W.; Wu, C. Method for Improving Corrosion Resistance of neodymium-Iron-Boron Materials by Low-Temperature Oxidation and/or Nitridation Treatment. U.S. Patent 2023282414A1, 7 September 2023. [Google Scholar]
- Godec, M.; Ruiz-Zepeda, F.; Podgornik, B.; Donik, Č.; Kocijan, A.; Skobir Balantič, D.A. The influence of the plasma-nitriding temperature on the microstructure evolution and surface properties of additive-manufactured 18Ni300 maraging steel. Surf. Coat. Technol. 2022, 433, 128089. [Google Scholar] [CrossRef]
- Fujihara, M.; Yoshimura, K.; Kikugawa, A. Process for Production of Surface-Modified Rare Earth Sintered Magnets and Surface-Modified Rare Earth Sintered Magnets. WO2009041639A1, 2 April 2009. [Google Scholar]
- Amherd-Hidalgo, A.; Boulmay, A.; Vuille, P. Corrosion-Inhibiting Protection for Watch Magnets, in Particular Neodymium-Iron-Boron Magnets. U.S. Patent 2022154327A1, 19 May 2022. [Google Scholar]
- Cheng, F.; Li, Y.; Zheng, Q.; Wei, L.; Zhang, C.; Da, B.; Zeng, Z. Sensitivity of ion implantation to low-energy electronic stopping cross-sections. Radiat. Phys. Chem. 2023, 204, 110681. [Google Scholar] [CrossRef]
- Iskanderova, Z.A.; Radjabov, T.D.; Leiderman, R.J.; Rakhimova, G.R.; Tukfatullin, F.K. The influence of ion implantation conditions on depth distribution and retention of implanted impurities. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1986, 14, 542–554. [Google Scholar] [CrossRef]
- Savaloni, H.; Modiri, F. Surface nano-structural modifications and characteristics in nitrogen ion implanted W as a function of temperature and N+ energy. Appl. Surf. Sci. 2006, 253, 1135–1142. [Google Scholar] [CrossRef]
- Bai, X.; Yu, H.; Pan, G.; Han, X. Neodymium-Iron-Boron Sintered Magnet and Method of Anti-Corrosion Treatment. U.S. Patent 2023178274A1, 8 June 2023. [Google Scholar]
- Jiang, L.; Liang, Y.; Ju, W.; Xu, S.; Tao, Z.; Cheng, F.; Wei, G. Rare Earth-Silane Composite Film on Sintered NdFeB Surface and Preparation Method of Rare Earth-Silane Composite Film. CN116190041A, 30 May 2023. [Google Scholar]
- Li, X.; Guo, C.; Lai, H.; Peng, C. NdFeB Plating Trivalent Black Chromium and Graphene Closed Plating Structure. CN218786671U, 4 April 2023. [Google Scholar]
- Xu, G.; Duan, L.; Su-Nam, L.; Zhang, P.; Lyu, J.; Wang, D.; Wu, Y. Preparation Method for Forming Titanium Salt-Silane Composite Passivation Layer on Surface of Electroplated Zn Coating of Sintered NdFeB Magnet. CN115896768A, 4 April 2023. [Google Scholar]
- Gosar, Ž.; Kovač, J.; Mozetič, M.; Primc, G.; Vesel, A.; Zaplotnik, R. Deposition of SiOxCyHz Protective Coatings on Polymer Substrates in an Industrial-Scale PECVD Reactor. Coatings 2019, 9, 234. [Google Scholar] [CrossRef]
- Pigliaru, L.; Paleari, L.; Bragaglia, M.; Nanni, F.; Ghidini, T.; Rinaldi, M. Poly-ether-ether-ketone—Neodymium-iron-boron bonded permanent magnets via fused filament fabrication. Synth. Met. 2021, 279, 116857. [Google Scholar] [CrossRef]
- Primc, G.; Mozetič, M. Surface Modification of Polymers by Plasma Treatment for Appropriate Adhesion of Coatings. Materials 2024, 17, 1494. [Google Scholar] [CrossRef] [PubMed]
- Robins, J.L. Thin film nucleation and growth kinetics. Appl. Surf. Sci. 1988, 33–34, 379–394. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Yi, S.-W.; Yu, I.-K.; Kim, W.-J.; Choi, S.-H. Cold Plasma Deposition of Polymeric Nanoprotrusion, Nanoparticles, and Nanofilm Structures on a Slide Glass Surface. Processes 2021, 9, 99. [Google Scholar] [CrossRef]
- Popok, V.N.; Kylián, O. Formation of Advanced Nanomaterials by Gas-Phase Aggregation. Appl. Nano 2021, 2, 82–84. [Google Scholar] [CrossRef]
- Golroudbary, S.R.; Makarava, I.; Kraslawski, A.; Repo, E. Global environmental cost of using rare earth elements in green energy technologies. Sci Total Environ. 2022, 832, 155022. [Google Scholar] [CrossRef]
- Kumari, A.; Sahu, S.K. A comprehensive review on recycling of critical raw materials from spent neodymium iron boron (NdFeB) magnet. Sep. Purif. Technol. 2023, 317, 123527. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Primc, G.; Mozetič, M. Recent Advances in Corrosion Inhibition of Bonded NdFeB Magnets. Materials 2024, 17, 2475. https://doi.org/10.3390/ma17112475
Primc G, Mozetič M. Recent Advances in Corrosion Inhibition of Bonded NdFeB Magnets. Materials. 2024; 17(11):2475. https://doi.org/10.3390/ma17112475
Chicago/Turabian StylePrimc, Gregor, and Miran Mozetič. 2024. "Recent Advances in Corrosion Inhibition of Bonded NdFeB Magnets" Materials 17, no. 11: 2475. https://doi.org/10.3390/ma17112475
APA StylePrimc, G., & Mozetič, M. (2024). Recent Advances in Corrosion Inhibition of Bonded NdFeB Magnets. Materials, 17(11), 2475. https://doi.org/10.3390/ma17112475