Microstructure and Properties of Ti(C,N)-Based Cermets with AlxCoCrFeNiTi Binder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of HEAs
2.2. Preparation of Cermets
2.3. Test and Characterization
3. Results
3.1. Phase Composition
3.2. Morphology and Microstructure of Cermets
3.3. Mechanical Properties
3.4. High-Temperature Oxidation Behavior
4. Conclusions
- With the increase in aluminum molar ratio, the phase structure of AlxCoCrFeNiTi HEAs changed from FCC phase to a mixture of FCC and BCC phases. The cermet grains were refined by HEAs binders, promoting the formation of WC and Mo2C solid solutions and making the core–rim structure more homogeneous compared with a cobalt-based cermet.
- The Vickers hardness and fracture toughness of the cermets increased with the increasing aluminum molar ratio. At the aluminum molar ratio of 1, the Vickers hardness and fracture toughness were 2464.5 MPa and 18.2 MPa × m1/2, respectively, while those of cermet with cobalt binder were 1605 MPa and 13 MPa × m1/2.
- After static oxidation at 1000 °C, the mass gain of the cermets with AlxCoCrFeNiTi binders was described by a quasi-parabolic law, where the cermet with Al0.6CoCrFeNiTi binder exhibited the lowest mass gain. In turn, the oxidation kinetics curve of the benchmark cermet with cobalt followed a linear law. The oxidation product of Ti(C,N)-based cermets with cobalt showed more TiO2, whereas the Ti(C,N)-based cermets with AlxCoCrFeNiTi binders were transformed into complex oxides, such as NiMoO4, NiWO4, FeMoO4, Fe3Ti3O9, and Ni3TiO7. The oxide layer on the cermet with Al0.6CoCrFeNiTi binder appeared to be dense and protective, which inhibited the diffusion of oxygen into the cermet and improved the oxidation resistance of the material.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, H.D.; Xia, X.Q.; Chen, W.L.; Liu, N.; Zhang, C.G. Cutting Performances, Mechanical Property and Microstructure of Ultra-Fine Grade Ti(C,N)-Based Cermets. Key Eng. Mater. 2008, 375, 102–106. [Google Scholar] [CrossRef]
- Yun, H.; Zou, B.; Wang, J. Effects of sintering temperature and nano Ti(C,N) on the microstructure and mechanical properties of Ti(C,N) cermets cutting tool materials with low Ni-Co. Mater. Sci. Eng. A 2017, 705, 98–104. [Google Scholar] [CrossRef]
- Zheng, Y.; You, M.; Xiong, W.; Liu, W.; Wang, S. Valence-electron structure and properties of main phases in Ti(C,N)-based cermets. Mater. Chem. Phys. 2003, 82, 877–881. [Google Scholar] [CrossRef]
- Joardar, J.; Kim, S.W.; Kang, S. Effect of nanocrystalline binder on the microstructure and mechanical properties of ultrafine Ti(CN) cermets. Mater. Sci. Eng. A 2003, 360, 385–389. [Google Scholar] [CrossRef]
- Xu, Q.; Ai, X.; Zhao, J.; Gong, F.; Pang, J.; Wang, Y. Effects of metal binder on the microstructure and mechanical properties of Ti(C,N)-based cermets. J. Alloys Compd. 2015, 644, 663–672. [Google Scholar] [CrossRef]
- Dios, M.; Kraleva, I.; González, Z.; Alvaredo, P.; Ferrari, B.; Gordo, E.; Bermejo, R. Mechanical characterization of Ti(C,N)-based cermets fabricated through different colloidal processing routes. J. Alloys Compd. 2018, 732, 806–817. [Google Scholar] [CrossRef] [Green Version]
- He, Z.-W.; Wang, M.-Z.; Hao, X.-L.; Zou, Q.; Zhao, Y.-C. Novel cemented carbide produced with TiN0.3 and high-entropy alloys. Rare Met. 2017, 36, 494–500. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, C.; Zou, B.; Liu, H.; Zhu, H.; Yao, P.; Wang, J. Effects of metal phases and carbides on the microstructure and mechanical properties of Ti(C,N)-based cermets cutting tool materials. Mater. Sci. Eng. A 2014, 618, 462–470. [Google Scholar] [CrossRef]
- Archana, M.S.; Srikanth, V.V.S.S.; Joshi, S.V.; Joardar, J. Influence of applied pressure during field-assisted sintering of Ti(C,N)–WC–FeAl based nanocomposite. Ceram. Int. 2015, 41, 1986–1993. [Google Scholar] [CrossRef]
- Huang, B.; Xiong, W.; Yang, Q.; Yao, Z.; Zhang, G.; Zhang, M. Preparation, microstructure and mechanical properties of multicomponent Ni3Al-bonded cermets. Ceram. Int. 2014, 40, 14073–14081. [Google Scholar] [CrossRef]
- Rajabi, A.; Ghazali, M.J.; Syarif, J.; Daud, A.R. Development and application of tool wear: A review of the characterization of TiC-based cermets with different binders. Chem. Eng. J. 2014, 255, 445–452. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Yeh, J.-W. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, Y.; Ye, J. Fabrication and properties of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloys binder. Mater. Lett. 2013, 113, 80–82. [Google Scholar] [CrossRef]
- Wang, Z.; Xiong, J.; Guo, Z.; Yang, T.; Liu, J.; Chai, B. The microstructure and properties of novel Ti(C,N)-based cermets with multi-component CoCrFeNiCu high-entropy alloy binders. Mater. Sci. Eng. A 2019, 766, 138345. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, Y.; Ye, J. Early high-temperature oxidation behavior of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Int. J. Refract. Met. Hard Mater. 2014, 44, 35–41. [Google Scholar] [CrossRef]
- Ji, W.; Zhang, J.; Wang, W.; Wang, H.; Zhang, F.; Wang, Y.; Fu, Z. Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid. J. Eur. Ceram. Soc. 2015, 35, 879–886. [Google Scholar] [CrossRef]
- Fu, Z.; Koc, R. Ultrafine TiB2-TiNiFeCrCoAl high-entropy alloy composite with enhanced mechanical properties. Mater. Sci. Eng. A 2017, 702, 184–188. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Guo, K.; Wang, H.; Cai, B.; Chang, F.; Hong, C.; Dai, P. Microstructure and properties of Ti(C, N)–TiB2–FeCoCrNiAl high-entropy alloys composite cermets. Mater. Sci. Eng. A 2019, 767, 138427. [Google Scholar] [CrossRef]
- Gou, Q.; Xiong, J.; Guo, Z.; Liu, J.; Yang, L.; Li, X. Influence of NbC additions on microstructure and wear resistance of Ti(C,N)-based cermets bonded by CoCrFeNi high-entropy alloy. Int. J. Refract. Met. Hard Mater. 2021, 94, 105375. [Google Scholar] [CrossRef]
- Fang, Y.; Xia, L.; Chen, G.; Wu, T.; Wang, R.; Yu, X.; Chen, K.; Zhang, M.; Zhao, X.; Cheng, H. High-performance Ti(C,N)-based cermet with ZrO2 whiskers and Al0.3CoCrFeNi high-entropy alloy. Int. J. Refract. Met. Hard Mater. 2022, 109, 105990. [Google Scholar] [CrossRef]
- Schubert, W.D.; Neumeister, H.; Kinger, G.; Lux, B. Hardness to toughness relationship of fine-grained WC-Co hardmetals. Int. J. Refract. Met. Hard Mater. 1998, 16, 133–142. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Chen, Z.; Shi, J.C.; Wang, Z.Y.; Zhang, J.Y. The effect of Al content on microstructures and comprehensive properties in AlxCoCrCuFeNi high entropy alloys. Vacuum 2019, 161, 143–149. [Google Scholar] [CrossRef]
- Yurchenko, N.Y.; Stepanov, N.D.; Shaysultanov, D.G.; Tikhonovsky, M.A.; Salishchev, G.A. Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys. Mater. Charact. 2016, 121, 125–134. [Google Scholar] [CrossRef]
- Xiao, L.L.; Zheng, Z.Q.; Guo, S.W.; Huang, P.; Wang, F. Ultra-strong nanostructured CrMnFeCoNi high entropy alloys. Mater. Des. 2020, 194, 108895. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, Y.; Yu, H.; Ye, J. Ultrafine (Ti, M)(C,N)-based cermets with optimal mechanical properties. Int. J. Refract. Met. Hard Mater. 2011, 29, 104–107. [Google Scholar] [CrossRef]
- Li, A.Q.; Lin, N.; Xu, L.W.; Zhang, W.J.; Zhang, X.C.; Wang, Z.Y.; Ma, C. Improvement mechanism of the oxidation resistance of Al-doped Ti(C,N)-based cermets: Influence of enriched Al in the subsurface oxide layer. Corros. Sci. 2022, 209, 110722. [Google Scholar] [CrossRef]
- Qi, K.; Yang, M.; Li, S.; Liu, J.; Li, T.; Ye, J. Microstructure and oxidation behavior of Ti(C,N)-based cermets with in situ synthesized Ni3Al phase. Int. J. Refract. Met. Hard Mater. 2018, 73, 157–161. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, X.; Wang, W.; Liu, B.; Lv, Y.; Yang, W.; Xu, D.; Liu, Y. A review on fundamental of high entropy alloys with promising high–temperature properties. J. Alloys Compd. 2018, 760, 15–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Sun, Z.; Liu, P.; Hai, W.; Chen, Y. Microstructure and Properties of Ti(C,N)-Based Cermets with AlxCoCrFeNiTi Binder. Materials 2023, 16, 2894. https://doi.org/10.3390/ma16072894
Liu M, Sun Z, Liu P, Hai W, Chen Y. Microstructure and Properties of Ti(C,N)-Based Cermets with AlxCoCrFeNiTi Binder. Materials. 2023; 16(7):2894. https://doi.org/10.3390/ma16072894
Chicago/Turabian StyleLiu, Meiling, Zhen Sun, Peng Liu, Wanxiu Hai, and Yuhong Chen. 2023. "Microstructure and Properties of Ti(C,N)-Based Cermets with AlxCoCrFeNiTi Binder" Materials 16, no. 7: 2894. https://doi.org/10.3390/ma16072894