3D Printing of CNT- and YSZ-Added Dental Resin-Based Composites by Digital Light Processing and Their Mechanical Properties
Abstract
1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuang, X.; Wu, J.; Chen, K.; Zhao, Z.; Ding, Z.; Hu, F.; Fang, D.; Qi, H.J. Grayscale Digital Light Processing 3D Printing for Highly Functionally Graded Materials. Sci. Adv. 2019, 5, eaav5790. [Google Scholar] [CrossRef]
- Jockusch, J.; Özcan, M. Additive Manufacturing of Dental Polymers: An Overview on Processes, Materials and Applications. Dent. Mater. J. 2020, 39, 345–354. [Google Scholar] [CrossRef]
- Monzón, M.; Ortega, Z.; Hernández, A.; Paz, R.; Ortega, F. Anisotropy of Photopolymer Parts Made by Digital Light Processing. Materials 2017, 10, 64. [Google Scholar] [CrossRef]
- Mu, Q.; Wang, L.; Dunn, C.K.; Kuang, X.; Duan, F.; Zhang, Z.; Qi, H.J.; Wang, T. Digital Light Processing 3D Printing of Conductive Complex Structures. Addit. Manuf. 2017, 18, 74–83. [Google Scholar] [CrossRef]
- Li, S.; Duan, W.; Zhao, T.; Han, W.; Wang, L.; Dou, R.; Wang, G. The Fabrication of SiBCN Ceramic Components from Preceramic Polymers by Digital Light Processing (DLP) 3D Printing Technology. J. Eur. Ceram. Soc. 2018, 38, 4597–4603. [Google Scholar] [CrossRef]
- Li, F.; Ji, X.; Wu, Z.; Qi, C.; Xian, Q.; Sun, B. Digital Light Processing 3D Printing of Ceramic Shell for Precision Casting. Mater. Lett. 2020, 276, 2–5. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, L.; Meng, X.; Yu, F.; Yang, N.; Liu, S. Digital Light Processing-Stereolithography Three-Dimensional Printing of Yttria-Stabilized Zirconia. Ceram. Int. 2020, 46, 8745–8753. [Google Scholar] [CrossRef]
- Mathew, E.; Pitzanti, G.; Gomes Dos Santos, A.L.; Lamprou, D.A. Optimization of Printing Parameters for Digital Light Processing 3d Printing of Hollow Microneedle Arrays. Pharmaceutics 2021, 13, 1837. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Ahn, J.S.; Lim, Y.J.; Kwon, H.B.; Kim, M.J. Effect of Post-Curing Time on the Color Stability and Related Properties of a Tooth-Colored 3D-Printed Resin Material. J. Mech. Behav. Biomed. Mater. 2022, 126, 104993. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Xie, D.; Liu, F.; Shen, L.; Tian, Z.; Yang, Y. Preparation and Properties of Functional Materials Based on Digital Light Processing 3D Printing. J. Nanomater. 2022, 2022, 4136072. [Google Scholar] [CrossRef]
- Lee, H.; Son, K.; Lee, D.H.; Kim, S.Y.; Lee, K.B. Comparison of Wear of Interim Crowns in Accordance with the Build Angle of Digital Light Processing 3D Printing: A Preliminary In Vivo Study. Bioengineering 2022, 9, 417. [Google Scholar] [CrossRef] [PubMed]
- Oei, J.D.; Mishriky, M.; Barghi, N.; Rawls, H.R.; Cardenas, H.L.; Aguirre, R.; Whang, K. Development of a Low-Color, Color Stable, Dual Cure Dental Resin. Dent. Mater. 2013, 29, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Quinn, G.D.; Giuseppetti, A.A.; Hoffman, K.H. Chipping Fracture Resistance of Dental CAD/CAM Restorative Materials: Part I-Procedures and Results. Dent. Mater. 2014, 30, e99–e111. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Sun, B.; Jiang, X.; Aldeyab, S.S.; Zhang, Q.; Zhu, M. Mechanical Properties of Dental Resin/Composite Containing Urchin-like Hydroxyapatite. Dent. Mater. 2014, 30, 1358–1368. [Google Scholar] [CrossRef]
- Ilie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Stansbury, J.W.; Cadenaro, M.; Ferracane, J.L. Academy of Dental Materials guidance-Resin composites: Part-I Mechanical Properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, H.; Kim, J.W.; Kim, J.H. Cytocompatibility of 3D Printed Dental Materials for Temporary Restorations on Fibroblasts. BMC Oral Health 2020, 20, 157. [Google Scholar] [CrossRef]
- Yao, L.; Hu, P.; Zhao, Y.; Lue, Q.T.; Nie, Z.; Yan, M.; He, Z. Handcrafted Digital Light Processing Apparatus for Additively Manufacturing Oral-Prosthesis Targeted Nano-Ceramic Resin Composites. Sci. Eng. Compos. Mater. 2021, 28, 315–326. [Google Scholar] [CrossRef]
- Ellakany, P.; Fouda, S.M.; Mahrous, A.A.; AlGhamdi, M.A.; Aly, N.M. Influence of CAD/CAM Milling and 3D-Printing Fabrication Methods on the Mechanical Properties of 3-Unit Interim Fixed Dental Prosthesis after Thermo-Mechanical Aging Process. Polymers 2022, 14, 4103. [Google Scholar] [CrossRef]
- Cho, K.; Rajan, G.; Farrar, P.; Prentice, L.; Prusty, B.G. Dental Resin Composites: A Review on Materials to Product Realizations. Compos. Part B Eng. 2022, 230, 109495. [Google Scholar] [CrossRef]
- German, M.J. Developments in Resin-Based Composites. Br. Dent. J. 2022, 232, 638–643. [Google Scholar] [CrossRef]
- Vermudt, A.; Kuga, M.C.; Besegato, J.F.; Oliveira, E.C.G.D.; Leandrin, T.P.; Só, M.V.R.; Moraes, J.C.S.; Pereira, J.R. Effect of Curing Modes on the Mechanical Properties of Commercial Dental Resin-Based Composites: Comparison between Different LEDs and Microwave Units. Polymers 2022, 14, 4020. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Sayed, M.E.; Shetty, M.; Alqahtani, S.M.; Al Wadei, M.H.D.; Gupta, S.G.; Othman, A.A.A.; Alshehri, A.H.; Alqarni, H.; Mobarki, A.H.; et al. Physical and Mechanical Properties of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis. Polymers 2022, 14, 2691. [Google Scholar] [CrossRef] [PubMed]
- Crenn, M.J.; Rohman, G.; Fromentin, O.; Benoit, A. Polylactic Acid as a Biocompatible Polymer for Three-Dimensional Printing of Interim Prosthesis: Mechanical Characterization. Dent. Mater. J. 2022, 41, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, E.T.P.; Campos, T.M.B.; Piza, M.M.T.; Gutierrez, E.; Lopes, A.C.O.; Witek, L.; Coelho, P.G.; Celestrino, M.; Carvalho, L.F.D.; Benalcázar Jalkh, E.B.; et al. Temporary Materials Used in Prosthodontics: The Effect of Composition, Fabrication Mode, and Aging on Mechanical Properties. J. Mech. Behav. Biomed. Mater. 2022, 133, 105333. [Google Scholar] [CrossRef]
- Xu, H.H.K.; Sun, L.; Weir, M.D.; Takagi, S.; Chow, L.C.; Hockey, B. Effects of incorporating nanosized calcium phosphate particles on properties of whisker-reinforced dental composites. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81, 116–125. [Google Scholar] [CrossRef]
- Curtis, A.R.; Palin, W.M.; Fleming, G.J.P.; Shortall, A.C.C.; Marquis, P.M. The mechanical properties of nano filled resin-based composites: Characterizing discrete filler particles and agglomerates using a micromanipulation technique. Dent. Mater. 2009, 25, 180–187. [Google Scholar] [CrossRef]
- Jun, S.K.; Kim, D.A.; Goo, H.J.; Lee, H.H. Investigation of the correlation between the different mechanical properties of resin composites. Dent. Mater. J. 2013, 32, 48–57. [Google Scholar] [CrossRef]
- Randolph, L.D.; Palin, W.M.; Leloup, G.; Leprince, J.G. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent. Mater. 2016, 32, 1586–1599. [Google Scholar] [CrossRef]
- Heintze, S.D.; Ilie, N.; Hickel, R.; Reis, A.; Loguercio, A.; Rousson, V. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials—A systematic review. Dent. Mater. 2017, 33, e101–e114. [Google Scholar] [CrossRef]
- Yang, D.L.; Sun, Q.; Niu, H.; Wang, R.L.; Wang, D.; Wang, J.X. The Properties of Dental Resin Composites Reinforced with Silica Colloidal Nanoparticle Clusters: Effects of Heat Treatment and Filler Composition. Compos. Part B Eng. 2020, 186, 107791. [Google Scholar] [CrossRef]
- Cho, K.; Yasir, M.; Jung, M.; Willcox, M.D.P.; Stenzel, M.H.; Rajan, G.; Farrar, P.; Prusty, B.G. Hybrid Engineered Dental Composites by Multiscale Reinforcements with Chitosan-Integrated Halloysite Nanotubes and S-Glass Fibers. Compos. Part B Eng. 2020, 202, 108448. [Google Scholar] [CrossRef]
- Li, Q.; Tang, C.; Liu, F.; He, J. The Physiochemical Properties of Dental Resin Composites Reinforced with Milled E-Glass Fibers. Silicon 2018, 10, 1999–2007. [Google Scholar] [CrossRef]
- Yang, D.L.; Cui, Y.N.; Sun, Q.; Liu, M.; Niu, H.; Wang, J.X. Antibacterial Activity and Reinforcing Effect of SiO2-ZnO Complex Cluster Fillers for Dental Resin Composites. Biomater. Sci. 2021, 9, 1795–1804. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Chen, C.; Chen, B.; Shen, J.; Zhang, H.; Xie, H. Effects of Hydrothermal Aging, Thermal Cycling, and Water Storage on the Mechanical Properties of a Machinable Resin-Based Composite Containing Nano-Zirconia Fillers. J. Mech. Behav. Biomed. Mater. 2020, 102, 103522. [Google Scholar] [CrossRef] [PubMed]
- Shariatinia, Z. Applications of Carbon Nanotubes. In Handbook of Carbon-Based Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 321–364. [Google Scholar] [CrossRef]
- Castro-Rojas, M.A.; Vega-Cantu, Y.I.; Cordell, G.A.; Rodriguez-Garcia, A. Dental Applications of Carbon Nanotubes. Molecules 2021, 26, 4423. [Google Scholar] [CrossRef]
- Khan, A.A.; Al Kheraif, A.A.; Syed, J.; Divakar, D.D.; Matinlinna, J.P. Enhanced Resin Zirconia Adhesion with Carbon Nanotubes-Infused Silanes: A Pilot Study. J. Adhes. 2018, 94, 167–180. [Google Scholar] [CrossRef]
- Sahmani, S.; Fattahi, A.M. Size-dependent Nonlinear Instability of Shear Deformable Cylindrical Nanopanales Subjected to Axial Compression in Thermal Environments. Microsyst. Technol. 2017, 23, 4717–4731. [Google Scholar] [CrossRef]
- Khan, A.A.; Mirza, E.H.; Syed, J.; Al Kheraif, A.A.; Mehmood, A.; Pekka, K.; Alfotawi, R. Single and Multi_walled Carbon Nanotube Fillers in Poly(methyl methacrylate)-Based Implant Material. J. Biomater. Tissue Eng. 2017, 7, 798–806. [Google Scholar] [CrossRef]
- Tebeta, R.T.; Fattahi, A.M.; Ahmed, N.A. Experimental and Numerical Study on HDPE/SWCNT Nanocomposite Elastic Properties Considering the Processing Techniques Effect. Microsyst. Technol. 2020, 26, 2423–2441. [Google Scholar] [CrossRef]
- Iqbal, A.; Saeed, A.; Ul-Hamid, A. A Review Featuring the Fundamentals and Advancements of Polymer/CNT Nanocomposite Application in Aerospace Industry. Polym. Bull. 2021, 78, 539–557. [Google Scholar] [CrossRef]
- Arrigo, R.; Malucelli, G. Rheological Behavior of Polymer/Carbon Nanotube Composites: An Overview. Materials 2020, 13, 2771. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kazemi, Y.; Wang, S.; Hamidinejad, M.; Mahmud, M.B.; Pötschke, P.; Park, C.B. Enhancing the Electrical Conductivity of PP/CNT Nanocomposites through Crystal-Induced Volume Exclusion Effect with a Slow Cooling Rate. Compos. Part B Eng. 2020, 183, 107663. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Cao, X.; Gong, S.; Xie, Z.; Li, T.; Wu, C.; Zhu, Z.; Li, Z. Effect of Nano-Scale Cu Particles on the Electrical Property of CNT/Polymer Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106325. [Google Scholar] [CrossRef]
- Chen, X.; Peng, F.; Wang, C.; Zhou, H.; Lin, X.; Liu, W.; Zhang, A. Improving the Flame Retardancy and Mechanical Properties of Epoxy Composites Significantly with a Low-Loading CNT-Based Hierarchical Hybrid Decorated with Reactive Hyperbranched Polyphosphoramide. Appl. Surf. Sci. 2022, 576, 151765. [Google Scholar] [CrossRef]
- Asthana, A.; Srivastava, V. Analysis of Mechanical Strength and Young’s Modulus of Ultrasonically Functionalised CNT-Epoxy Composites. Adv. Mater. Process. Technol. 2022, 8, 1105–1112. [Google Scholar] [CrossRef]
- de Souza Leão, R.; de Moraes, S.L.D.; de Luna Gomes, J.M.; Lemos, C.A.A.; da Silva Casado, B.G.; do Egito Vasconcelos, B.C.; Pellizzer, E.P. Influence of Addition of Zirconia on PMMA: A Systematic Review. Mater. Sci. Eng. C 2020, 106, 110292. [Google Scholar] [CrossRef] [PubMed]
- Zidan, S.; Silikas, N.; Alhotan, A.; Haider, J.; Yates, J. Investigating the Mechanical Properties of ZrO2-Impregnated PMMA Nanocomposite for Denture-Based Applications. Materials 2019, 12, 1344. [Google Scholar] [CrossRef]
- Jang, B.K.; Lee, J.H.; Fisher, C.A.J. Mechanical Properties and Phase-Transformation Behavior of Carbon Nanotube-Reinforced Yttria-Stabilized Zirconia Composites. Ceram. Int. 2021, 47, 35287–35293. [Google Scholar] [CrossRef]
- Choudhary, N.; Sharma, V.; Kumar, P. Reinforcement of Polylactic Acid with Bioceramics (Alumina and YSZ Composites) and Their Thermomechanical and Physical Properties for Biomedical Application. J. Vinyl Addit. Technol. 2021, 27, 612–625. [Google Scholar] [CrossRef]
- Chavan, C.; Bhajantri, R.F.; Cyriac, V.; Ismayil; Bulla, S.; Ravikumar, H.B.; Raghavendra, M.; Sakthipandi, K. Exploration of Free Volume Behavior and Ionic Conductivity of PVA: X (x = 0, Y2O3, ZrO2, YSZ) Ion-Oxide Conducting Polymer Ceramic Composites. J. Non. Cryst. Solids 2022, 590, 121696. [Google Scholar] [CrossRef]
- Berry, A.M. A Comparison of Listerine® and Sodium Bicarbonate Oral Cleansing Solutions on Dental Plaque Colonisation and Incidence of Ventilator Associated Pneumonia in Mechanically Ventilated Patients: A Randomised Control Trial. Intensive Crit. Care Nurs. 2013, 29, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Vlachojannis, C.; Chrubasik-Hausmann, S.; Hellwig, E.; Al-Ahmad, A. A Preliminary Investigation on the Antimicrobial Activity of Listerine®, Its Components, and of Mixtures Thereof. Phyther. Res. 2015, 29, 1590–1594. [Google Scholar] [CrossRef] [PubMed]
- Della Bona, A.; Pecho, O.E.; Ghinea, R.; Cardona, J.C.; Pérez, M.M. Colour Parameters and Shade Correspondence of CAD-CAM Ceramic Systems. J. Dent. 2015, 43, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Pithon, M.M.; Sant’Anna, L.I.D.A.; Baião, F.C.S.; Santos, R.L.D.; Coqueiro, R.D.S.; Maia, L.C. Assessment of the Effectiveness of Mouthwashes in Reducing Cariogenic Biofilm in Orthodontic Patients: A Systematic Review. J. Dent. 2015, 43, 297–308. [Google Scholar] [CrossRef]
- Alpkilic, D.S.; Ongul, D.; Isler Deger, S. Stainability of Different Ceramic Materials against Mouth Rinses and Effect of Polishing after Staining. J. Prosthet. Dent. 2021, 126, 686.e1–686.e7. [Google Scholar] [CrossRef]
- Morais Sampaio, G.A.D.; Rangel Peixoto, L.; de Vasconcelos Neves, G.; Nascimento Barbosa, D. do Effect of Mouthwashes on Color Stability of Composite Resins: A Systematic Review. J. Prosthet. Dent. 2021, 126, 386–392. [Google Scholar] [CrossRef]
- Akama, Y.; Nagamatsu, Y.; Ikeda, H.; Nakao-Kuroishi, K.; Kometani-Gunjigake, K.; Kawamoto, T.; Shimizu, H. Applicability of Neutral Electrolyzed Water for Cleaning Contaminated Fixed Orthodontic Appliances. Am. J. Orthod. Dentofac. Orthop. 2022, 161, e507–e523. [Google Scholar] [CrossRef]
UV wavelength of DLP printer: | 405 nm |
Light intensity: | 2.8 mW/cm2 |
Curing time for each layer: | 7 s |
Layer thickness: | 50 μm |
Curing time after printing: | 10 min |
Resin temperature while printing: | 25 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, M.; Raju, K.; Lee, J.; Jung, J.; Jeong, S.; Kim, J.-i.; Cho, J. 3D Printing of CNT- and YSZ-Added Dental Resin-Based Composites by Digital Light Processing and Their Mechanical Properties. Materials 2023, 16, 1873. https://doi.org/10.3390/ma16051873
Son M, Raju K, Lee J, Jung J, Jeong S, Kim J-i, Cho J. 3D Printing of CNT- and YSZ-Added Dental Resin-Based Composites by Digital Light Processing and Their Mechanical Properties. Materials. 2023; 16(5):1873. https://doi.org/10.3390/ma16051873
Chicago/Turabian StyleSon, Minhyuk, Kati Raju, Jaemin Lee, Jinsik Jung, Seik Jeong, Ji-in Kim, and Jaehun Cho. 2023. "3D Printing of CNT- and YSZ-Added Dental Resin-Based Composites by Digital Light Processing and Their Mechanical Properties" Materials 16, no. 5: 1873. https://doi.org/10.3390/ma16051873
APA StyleSon, M., Raju, K., Lee, J., Jung, J., Jeong, S., Kim, J.-i., & Cho, J. (2023). 3D Printing of CNT- and YSZ-Added Dental Resin-Based Composites by Digital Light Processing and Their Mechanical Properties. Materials, 16(5), 1873. https://doi.org/10.3390/ma16051873