Formation Pathways of Lath-Shaped WO3 Nanosheets and Elemental W Nanoparticles from Heating of WO3 Nanocrystals Studied via In Situ TEM
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tahir, M.B.; Sagir, M.; Muhammad, S.; Siddeeg, S.M.; Iqbal, T.; Asiri, A.M.; Ijaz, M. Hierarchical WO3@ BiVO4 nanostructures for improved green energy production. Appl. Nanosci. 2020, 10, 1183–1190. [Google Scholar] [CrossRef]
- Yan, Z.; Shan, W.; Shi, X.; He, G.; Lian, Z.; Yu, Y.; Shan, Y.; Liu, J.; He, H. The way to enhance the thermal stability of V2O5-based catalysts for NH3-SCR. Catal. Today 2020, 355, 408–414. [Google Scholar] [CrossRef]
- Li, N.; Zheng, Y.; Wei, L.; Teng, H.; Zhou, J. Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol. Green Chem. 2017, 19, 682–691. [Google Scholar] [CrossRef]
- Kong, W.; Zhang, R.; Zhang, X.; Ji, L.; Yu, G.; Wang, T.; Luo, Y.; Shi, X.; Xu, Y.; Sun, X. WO3 nanosheets rich in oxygen vacancies for enhanced electrocatalytic N2 reduction to NH3. Nanoscale 2019, 11, 19274–19277. [Google Scholar] [CrossRef] [PubMed]
- Cantalini, C.; Sun, H.T.; Faccio, M.; Pelino, M.; Santucci, S.; Lozzi, L.; Passacantando, M. NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation. Sens. Actuators B Chem. 1996, 31, 81–87. [Google Scholar] [CrossRef]
- Wang, L.; Teleki, A.; Pratsinis, S.E.; Gouma, P.I. Ferroelectric WO3 nanoparticles for acetone selective detection. Chem. Mater. 2008, 20, 4794–4796. [Google Scholar] [CrossRef]
- Wang, D.; Huang, S.; Li, H.; Chen, A.; Wang, P.; Yang, J.; Wang, X.; Yang, J. Ultrathin WO3 nanosheets modified by g-C3N4 for highly efficient acetone vapor detection. Sens. Actuators B Chem. 2019, 282, 961–971. [Google Scholar] [CrossRef]
- Rahmani, M.B.; Yaacob, M.H.; Sabri, Y.M. Hydrogen sensors based on 2D WO3 nanosheets prepared by anodization. Sens. Actuators B 2017, 251, 57–64. [Google Scholar] [CrossRef]
- Shinde, P.A.; Jun, S.C. Review on Recent Progress in the Development of Tungsten Oxide Based Electrodes for Electrochemical Energy Storage. ChemSusChem 2020, 13, 11–38. [Google Scholar] [CrossRef]
- Stubhan, T.; Li, N.; Luechinger, N.A.; Halim, S.C.; Matt, G.J.; Brabec, C.J.; Stubhan, T.; Li, N.; Matt, G.J.; Brabec, C.J.; et al. High Fill Factor Polymer Solar Cells Incorporating a Low Temperature Solution Processed WO3 Hole Extraction Layer. Adv. Energy Mater. 2012, 2, 1433–1438. [Google Scholar] [CrossRef]
- Li, N.; Stubhan, T.; Luechinger, N.A.; Halim, S.C.; Matt, G.J.; Ameri, T.; Brabec, C.J. Inverted structure organic photovoltaic devices employing a low temperature solution processed WO3 anode buffer layer. Org. Electron. 2012, 13, 2479–2484. [Google Scholar] [CrossRef]
- Pathak, R.; Gurung, A.; Elbohy, H.; Chen, K.; Reza, K.M.; Bahrami, B.; Mabrouk, S.; Ghimire, R.; Hummel, M.; Gu, Z.; et al. Self-recovery in Li-metal hybrid lithium-ion batteries via WO3 reduction †. Nanoscale 2018, 10, 15956–15966. [Google Scholar] [CrossRef]
- Pyper, O. In situ Raman spectroscopy of the electrochemical reduction of WO3 thin films in various electrolytes. Sol. Energy Mater. Sol. Cells 2002, 71, 511–522. [Google Scholar] [CrossRef]
- Chatten, R.; Chadwick, A.V.; Rougier, A.; Lindan, P.J.D. The oxygen vacancy in crystal phases of WO3. J. Phys. Chem. B 2005, 109, 3146–3156. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Di Valentin, C.; Pacchioni, G. Electronic and structural properties of WO3: A systematic hybrid DFT study. J. Phys. Chem. C 2011, 115, 8345–8353. [Google Scholar] [CrossRef]
- Karazhanov, S.Z.; Zhang, Y.; Mascarenhas, A.; Deb, S.; Wang, L.W. Oxygen vacancy in cubic WO3 studied by first-principles pseudopotential calculation. In Proceedings of the Solid State Ionics; Elsevier: Amsterdam, The Netherlands, 2003; Volume 165, pp. 43–49. [Google Scholar]
- Wriedt, H.A. The O-W (oxygen-tungsten) system. Bull. Alloy Phase Diagrams 1989, 10, 368–384. [Google Scholar] [CrossRef]
- Ramana, C.V.; Utsunomiya, S.; Ewing, R.C.; Julien, C.M.; Becker, U. Structural stability and phase transitions in WO3 thin films. J. Phys. Chem. B 2006, 110, 10430–10435. [Google Scholar] [CrossRef]
- Vogt, T.; Woodward, P.M.; Hunter, B.A. The High-Temperature Phases of WO3. J. Solid State Chem. 1999, 144, 209–215. [Google Scholar] [CrossRef]
- Pokhrel, S.; Birkenstock, J.; Dianat, A.; Zimmermann, J.; Schowalter, M.; Rosenauer, A.; Ciacchi, L.C.; Mädler, L. In situ high temperature X-ray diffraction, transmission electron microscopy and theoretical modeling for the formation of WO3 crystallites. CrystEngComm 2015, 17, 6985–6998. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Pfeifer, J.; Balázsi, C.; Tóth, A.L.; Varga-Josepovits, K.; Madarász, J.; Pokol, G. Thermal stability of hexagonal tungsten trioxide in air. J. Therm. Anal. Calorim. 2008, 94, 499–505. [Google Scholar] [CrossRef]
- Righettoni, M.; Tricoli, A.; Pratsinis, S.E. Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem. Mater. 2010, 22, 3152–3157. [Google Scholar] [CrossRef]
- Wang, W.; Janotti, A.; Van De Walle, C.G. Phase transformations upon doping in WO3. J. Chem. Phys. 2017, 146, 214504. [Google Scholar] [CrossRef]
- Walkingshaw, A.D.; Spaldin, N.A.; Artacho, E. Density-functional study of charge doping in WO3. Phys. Rev. B Condens. Matter Mater. Phys. 2004, 70, 165110. [Google Scholar] [CrossRef]
- Wang, Z.; He, Y.; Gu, M.; Du, Y.; Mao, S.X.; Wang, C. Electron Transfer Governed Crystal Transformation of Tungsten Trioxide upon Li Ions Intercalation. ACS Appl. Mater. Interfaces 2016, 8, 24567–24572. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R. New Sequence of Structural Phase Transitions in NaxWO3. Phys. Rev. Lett. 1977, 39, 1550–1553. [Google Scholar] [CrossRef]
- Lee, S.H.; Seong, M.J.; Cheong, H.M.; Ozkan, E.; Tracy, E.C.; Deb, S.K. Effect of crystallinity on electrochromic mechanism of LixWO3 thin films. Solid State Ionics 2003, 156, 447–452. [Google Scholar] [CrossRef]
- Zhong, Q.; Dahn, J.R.; Colbow, K. Lithium Intercalation into WO3 and the Phase Diagram of LixWO3. Phys. Rev. B 1992, 46, 2554–2560. [Google Scholar] [CrossRef]
- Brown, B.W.; Banks, E. The Sodium Tungsten Bronzes. J. Am. Chem. Soc. 1954, 76, 963–966. [Google Scholar] [CrossRef]
- Cazzanelli, E.; Vinegoni, C.; Mariotto, G.; Kuzmin, A.; Purans, J. Low-Temperature Polymorphism in Tungsten Trioxide Powders and Its Dependence on Mechanical Treatments. J. Solid State Chem. 1999, 143, 24–32. [Google Scholar] [CrossRef]
- Thummavichai, K.; Wang, N.; Xu, F.; Rance, G.; Xia, Y.; Zhu, Y. In situ investigations of the phase change behaviour of tungsten oxide nanostructures. R. Soc. Open Sci. 2018, 5, 171932. [Google Scholar] [CrossRef]
- Howard, C.J.; Luca, V.; Knight, K.S. High-temperature phase transitions in tungsten trioxide-the last word? J. Phys. Condens. Matter 2002, 14, 377–387. [Google Scholar] [CrossRef]
- Han, B.; Khoroshilov, A.V.; Tyurin, A.V.; Baranchikov, A.E.; Razumov, M.I.; Ivanova, O.S.; Gavrichev, K.S.; Ivanov, V.K. WO3 thermodynamic properties at 80–1256 K revisited. J. Therm. Anal. Calorim. 2020, 142, 1533–1543. [Google Scholar] [CrossRef]
- Corà, F.; Patel, A.; Harrison, N.M.; Dovesi, R.; Catlow, C.R.A. An ab Initio Hartree−Fock Study of the Cubic and Tetragonal Phases of Bulk Tungsten Trioxide. J. Am. Chem. Soc. 1996, 118, 12174–12182. [Google Scholar] [CrossRef]
- Balázsi, C.; Farkas-Jahnke, M.; Kotsis, I.; Petrás, L.; Pfeifer, J. The observation of cubic tungsten trioxide at high-temperature dehydration of tungstic acid hydrate. Solid State Ionics 2001, 141, 411–416. [Google Scholar] [CrossRef]
- Yamaguchi, O.; Tomihisa, D.; Kawabata, H.; Shimizu, K. Formation and Transformation of WO3 Prepared from Alkoxide. J. Am. Ceram. Soc. 1987, 70, C-94–C-96. [Google Scholar] [CrossRef]
- Van Huis, M.A.; Young, N.P.; Pandraud, G.; Creemer, J.F.; Vanmaekelbergh, D.; Kirkland, A.I.; Zandbergen, H.W. Atomic maging of phase transitions and morphology transformations in nanocrystals. Adv. Mater. 2009, 21, 4992–4995. [Google Scholar] [CrossRef]
- Sarin, V.K. Morphological changes occurring during reduction of WO3. J. Mater. Sci. 1975, 10, 593–598. [Google Scholar] [CrossRef]
- Mohammad, A. Al Synthesis, separation and electrical properties of WO3-x nanopowders via partial pressure high energy ball-milling. Acta Phys. Pol. A 2009, 116, 240–244. [Google Scholar] [CrossRef]
- Kang, H.; Jeong, Y.K.; Oh, S.T. Hydrogen reduction behavior and microstructural characteristics of WO3 and WO3-NiO powders. Int. J. Refract. Met. Hard Mater. 2019, 80, 69–72. [Google Scholar] [CrossRef]
- Wang, J.S.; Zhao, Q.; Liu, T.; He, W. Reduction behavior of tungsten oxide with and without scandia doping. Rare Met. 2020, 40, 687–692. [Google Scholar] [CrossRef]
- Löfberg, A.; Frennet, A.; Leclercq, G.; Leclercq, L.; Giraudon, J.M. Mechanism of WO3 Reduction and Carburization in CH4/H2 Mixtures Leading to Bulk Tungsten Carbide Powder Catalysts. J. Catal. 2000, 189, 170–183. [Google Scholar] [CrossRef]
- Fouad, N.E.; Attyia, K.M.E.; Zaki, M.I. Thermogravimetry of WO3 reduction in hydrogen: Kinetic characterization of autocatalytic effects. Powder Technol. 1993, 74, 31–37. [Google Scholar] [CrossRef]
- Chen, X.; Van Gog, H.; Van Huis, M.A. Transformation of Co3O4nanoparticles to CoO monitored by: In situ TEM and predicted ferromagnetism at the Co3O4/CoO interface from first principles. J. Mater. Chem. C 2021, 9, 5662–5675. [Google Scholar] [CrossRef] [PubMed]
- Azam, A.; Kim, J.; Park, J.; Novak, T.G.; Tiwari, A.P.; Song, S.H.; Kim, B.; Jeon, S. Two-Dimensional WO3 Nanosheets Chemically Converted from Layered WS2 for High-Performance Electrochromic Devices. Nano Lett. 2018, 18, 5645–5651. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Guinel, M.J.F. Synthesis and characterization of tungstite (WO3·H2O) nanoleaves and nanoribbons. Acta Mater. 2014, 69, 203–209. [Google Scholar] [CrossRef]
- Li, Y.B.; Bando, Y.; Goldberg, D.; Kurashima, K. WO3 nanorods/nanobelts synthesized via physical vapor deposition process. Chem. Phys. Lett. 2003, 367, 214–218. [Google Scholar] [CrossRef]
- Thangala, J.; Vaddiraju, S.; Bogale, R.; Thurman, R.; Powers, T.; Deb, B.; Sunkara, M.K. Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires. Small 2007, 3, 890–896. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Li, Y.H.; Ahmad, I.; McCartney, D.G.; Zhu, Y.Q.; Hu, W.B. Two-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett. 2006, 89, 133116. [Google Scholar] [CrossRef]
- Su, C.Y.; Lin, H.C.; Yang, T.K.; Lin, C.K. Structure and optical properties of tungsten oxide nanomaterials prepared by a modified plasma arc gas condensation technique. J. Nanoparticle Res. 2010, 12, 1755–1763. [Google Scholar] [CrossRef]
- Baek, Y.; Yong, K. Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder. J. Phys. Chem. C 2007, 111, 1213–1218. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Liu, H.; Zhou, Y.; Li, R.; Cai, M.; Sun, X. Three-Dimensional hierarchical structure of single crystalline tungsten oxide nanowires: Construction, phase transition, and voltammetric behavior. J. Phys. Chem. C 2009, 113, 1746–1750. [Google Scholar] [CrossRef]
- Hong, K.; Xie, M.; Hu, R.; Wu, H. Synthesizing tungsten oxide nanowires by a thermal evaporation method. Appl. Phys. Lett. 2007, 90, 173121. [Google Scholar] [CrossRef]
- Gu, G.; Zheng, B.; Han, W.Q.; Roth, S.; Liu, J. Tungsten Oxide Nanowires on Tungsten Substrates. Nano Lett. 2002, 2, 849–851. [Google Scholar] [CrossRef]
- Jin, Y.Z.; Zhu, Y.Q.; Whitby, R.L.D.; Yao, N.; Ma, R.; Watts, P.C.P.; Kroto, H.W.; Walton, D.R.M. Simple Approaches to Quality Large-Scale Tungsten Oxide Nanoneedles. J. Phys. Chem. B 2004, 108, 15572–15577. [Google Scholar] [CrossRef]
- Shen, G.; Bando, Y.; Golberg, D.; Zhou, C. Electron-Beam-Induced Synthesis and Characterization of W18 O49 Nanowires. J. Phys. Chem. C 2008, 112, 5856–5859. [Google Scholar] [CrossRef]
- Dai, Z.R.; Pan, Z.W.; Wang, Z.L. Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation. Adv. Funct. Mater. 2003, 13, 9–24. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; van Huis, M.A. Formation Pathways of Lath-Shaped WO3 Nanosheets and Elemental W Nanoparticles from Heating of WO3 Nanocrystals Studied via In Situ TEM. Materials 2023, 16, 1291. https://doi.org/10.3390/ma16031291
Chen X, van Huis MA. Formation Pathways of Lath-Shaped WO3 Nanosheets and Elemental W Nanoparticles from Heating of WO3 Nanocrystals Studied via In Situ TEM. Materials. 2023; 16(3):1291. https://doi.org/10.3390/ma16031291
Chicago/Turabian StyleChen, Xiaodan, and Marijn A. van Huis. 2023. "Formation Pathways of Lath-Shaped WO3 Nanosheets and Elemental W Nanoparticles from Heating of WO3 Nanocrystals Studied via In Situ TEM" Materials 16, no. 3: 1291. https://doi.org/10.3390/ma16031291
APA StyleChen, X., & van Huis, M. A. (2023). Formation Pathways of Lath-Shaped WO3 Nanosheets and Elemental W Nanoparticles from Heating of WO3 Nanocrystals Studied via In Situ TEM. Materials, 16(3), 1291. https://doi.org/10.3390/ma16031291