Scintillation Properties of Lanthanide Doped Pb4Lu3F17 Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, L.; Wang, Y.; Kuzmin, A.; Hua, Y.; Zhao, J.; Xu, S.; Prasad, P.N. Next generation lanthanide doped nanoscintillators and photon converters. eLight 2022, 2, 17. [Google Scholar] [CrossRef]
- Pan, S.; Peng, H. Making Passive Daytime Radiative Cooling Metafabrics on a Large Scale. Adv. Fiber Mater. 2021, 4, 3–4. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, R.; Zeng, X.; Luo, Y.; Luo, Z. An Easy-to-Prepare Flexible Dual-Mode Fiber Membrane for Daytime Outdoor Thermal Management. Adv. Fiber Mater. 2022, 4, 1058–1068. [Google Scholar] [CrossRef]
- Wen, X.; Xiong, J.; Lei, S.; Wang, L.; Qin, X. Diameter Refinement of Electrospun Nanofibers: From Mechanism, Strategies to Applications. Adv. Fiber Mater. 2022, 4, 145–161. [Google Scholar] [CrossRef]
- Chen, X.F.; Song, J.B.; Chen, X.Y.; Yang, H.H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 2019, 48, 3073–3101. [Google Scholar] [CrossRef]
- Overdick, M.; Baumer, C.; Engel, K.J.; Fink, J.; Herrmann, C.; Kruger, H.; Simon, M.; Steadman, R.; Zeitler, G. Status of direct conversion detectors for medical imaging with X-rays. IEEE Trans. Nucl. Sci. 2009, 56, 1800–1809. [Google Scholar] [CrossRef]
- Persson, M.; Bujila, R.; Nowik, P.; Andersson, H.; Kull, L.; Andersson, J.; Bornefalk, H.; Danielsson, M. Upper limits of the photon fluence rate on CT detectors: Case study on a commercial scanner. Med. Phys. 2016, 43, 4398–4411. [Google Scholar] [CrossRef]
- Nikl, M.; Yoshikawa, A. Recent R&D Trends in Inorganic Single-Crystal Scintillator Materials for Radiation Detection. Adv. Opt. Mater. 2015, 3, 463–481. [Google Scholar]
- Cheng, Y.; Lei, L.; Zhu, W.; Wang, Y.; Guo, H.; Xu, S. Enhancing light yield of Tb3+-doped fluoride nanoscintillator with restricted positive hysteresis for low-dose high-resolution X-ray imaging. Nano Res. 2022. [Google Scholar] [CrossRef]
- Chen, M.; Wang, C.; Hu, W. Organic photoelectric materials for X-ray and gamma ray detection: Mechanism, material preparation and application. J. Mater. Chem. C 2021, 9, 4709–4729. [Google Scholar] [CrossRef]
- Hashem, J.A.; Pryor, M.; Landsberger, S.; Hunter, J.; Janecky, D.R. Automating High-Precision X-Ray and Neutron Imaging Applications with Robotics. IEEE Trans. Autom. Sci. Eng. 2018, 15, 663–674. [Google Scholar] [CrossRef]
- Chen, F.; Ju, M.; Gutsev, G.L.; Kuang, X.; Lu, C.; Yeung, Y. Structure and luminescence properties of a Nd3+ doped Bi4Ge3O12 scintillation crystal: New insights from a comprehensive study. J. Mater. Chem. C 2017, 5, 3079–3087. [Google Scholar] [CrossRef]
- Auffray, E.; Augulis, R.; Borisevich, A.; Gulbinas, V.; Fedorov, A.; Korjik, M.; Lucchini, M.; Mechinsky, V.; Nargelas, S.; Songaila, E.; et al. Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals. J. Lumin. 2016, 178, 54–60. [Google Scholar] [CrossRef]
- Jia, Y.C.; Miglio, A.; Mikami, M.; Gonze, X. Ab initio study of luminescence in Ce-doped Lu2SiO5: The role of oxygen vacancies on emission color and thermal quenching behavior. Phys. Rev. Mater. 2018, 2, 125202. [Google Scholar] [CrossRef]
- Khan, A.; Rooh, G.; Kim, H.; Park, H.; Kim, S. Intrinsically activated TlCaCl3: A new halide scintillator for radiation detection. Radiat. Meas. 2018, 107, 115–118. [Google Scholar] [CrossRef]
- Ren, G.; Chen, X.; Pei, Y.; Li, H.; Xu, H. Dehydration and oxidation in the preparation of Ce-doped LaCl3 scintillation crystals. J. Alloy. Compd. 2009, 467, 120–123. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Watanabe, K.; Fukuda, K.; Kawaguchi, N.; Miyamoto, Y.; Nanto, H. Scintillation and optical stimulated luminescence of Ce-doped CaF2. Radiat. Meas. 2015, 71, 162–165. [Google Scholar] [CrossRef]
- de Mello, A.C.; Andrade, A.B.; Nakamura, G.H.; Baldochi, S.L.; Valerio, M.E. Scintillation mechanism of Tb3+ doped BaY2F8. Opt. Mater. 2010, 32, 1337–1340. [Google Scholar] [CrossRef]
- Kamada, K.; Yanagida, T.; Nikl, M.; Fukabori, A.; Yoshikawa, A.; Aoki, K. Crystal growth and luminescent properties of pr-doped K (Y, Lu)3F10 single crystal for scintillator application. J. Cryst. Growth 2010, 312, 2795–2798. [Google Scholar] [CrossRef]
- Heo, J.H.; Shin, D.H.; Park, J.K.; Kim, D.H.; Lee, S.J.; Im, S.H. High-performance next-generation perovskite nanocrystal scintillator for nandestructive X-ray imaging. Adv. Mater. 2018, 30, 1801743. [Google Scholar] [CrossRef]
- Birowosuto, M.D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C. X-ray Scintillation in Lead Halide Perovskite Crystals. Sci. Rep. 2016, 6, 37254. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lin, H.; Huang, Q.; Huang, F.; Xu, J.; Wang, B.; Lin, Z.; Zhou, J.; Wang, Y. A novel double-perovskite Gd2ZnTiO6:Mn4+ red phosphor for UV-based w-LEDs: Structure and luminescence properties. J. Mater. Chem. C 2016, 4, 2374–2381. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Tian, Y.; Huang, P.; Wang, L.; Shi, Q.F.; Cui, C.E. Effect of Yb3+ concentration on up-conversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route. Chem. Eng. J. 2016, 297, 26–34. [Google Scholar] [CrossRef]
- Achary, S.N.; Patwe, S.J.; Tyagi, A.K. Powder XRD study of Ba4Eu3F17: A new anion rich fluorite related mixed fluoride. Powder Diffr. 2002, 17, 225–229. [Google Scholar] [CrossRef]
- Krieke, G.; Sarakovskis, A.; Springis, M. Ordering of fluorite-type phases in erbium-doped oxyfluoride glass ceramics. J. Eur. Ceram. Soc. 2018, 38, 235–243. [Google Scholar] [CrossRef]
- Li, J.; Hao, Z.; Zhang, X.; Luo, Y.; Zhao, J.; Lü, S.; Cao, J.; Zhang, J. Hydrothermal synthesis and up-conversion luminescence properties of beta-NaGdF4:Yb3+/Tm3+ and beta-NaGdF4:Yb3+/Ho3+ submicron crystals with regular morphologies. J. Colloid Interface Sci. 2013, 392, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Pitale, S.S.; Kumar, V.; Nagpure, I.M.; Ntwaeaborwa, O.M.; Coetsee, E.; Swart, H.C. Cathodoluminescent properties and surface characterization of blush-white LiAl5O8: Tb phosphor. J. Appl. Phys. 2011, 109, 013105. [Google Scholar] [CrossRef]
- Huang, X.; Li, B.; Guo, H. Synthesis, photoluminescence, cathodoluminescence, and thermal properties of novel Tb3+-doped BiOCl green-emitting phosphors. J. Alloy. Compd. 2017, 695, 2773–2780. [Google Scholar] [CrossRef]
- Xia, Z.G.; Liu, R.S. Tunable blue-green color emission and energy transfer of Ca2Al3O6F: Ce3+,Tb3+ phosphors for near-UV white LEDs. J. Phys. Chem. C 2012, 116, 15604–15609. [Google Scholar] [CrossRef]
- Lei, L.; Wang, Y.; Xu, W.; Ye, R.; Hua, Y.; Deng, D.; Chen, L.; Prasad, P.N.; Xu, S. Manipulation of time-dependent multicolour evolution of X-ray excited afterglow in lanthanide-doped fluoride nanoparticles. Nat. Commun. 2022, 13, 5739. [Google Scholar] [CrossRef]
Formula | Pb4Lu3F17: Tb | |||||
---|---|---|---|---|---|---|
Crystal system | rhombohedral | |||||
Density (g/cm3) | 7.144 | |||||
Space-group | R3 (148) | |||||
a (Å) = b (Å) | 10.72442 | |||||
c (Å) | 19.86123 | |||||
α = β (°) | 90 | |||||
γ (°) | 120 | |||||
Rwp (%) | 11.7 | |||||
chi2 | 1.84 | |||||
Atoms | X | Y | Z | B | Occ. | Site |
Pb (1) | 0 | 0 | 0.2586 | 1.658 | 6 | |
Pb (2) | 0.2292 | 0.0369 | 0.0836 | 2.163 | 18 | |
Lu | 0.09 | 0.6127 | 0.0835 | 0.774 | 18 | |
F (1) | 0.036 | 0.767 | 0.0376 | 1.5 | 18 | |
F (2) | 0.426 | 0.291 | 0.1101 | 1.5 | 18 | |
F (3) | 0.475 | 0.082 | 0.321 | 1.5 | 18 | |
F (4) | 0.203 | 0.485 | 0.341 | 1.5 | 18 | |
F (5) | 0.267 | 0.392 | 0.1735 | 1..5 | 18 | |
F (6) | 0 | 0 | 0.145 | 1.5 | 6 | |
F (7) | 0 | 0 | 0 | 1.5 | 3 | |
F (8) | 0.02 | 0.057 | 0.502 | 1.5 | 0.167 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, P.; Ping, Y.; Ma, H.; Lei, L. Scintillation Properties of Lanthanide Doped Pb4Lu3F17 Nanoparticles. Materials 2023, 16, 1147. https://doi.org/10.3390/ma16031147
Qiao P, Ping Y, Ma H, Lei L. Scintillation Properties of Lanthanide Doped Pb4Lu3F17 Nanoparticles. Materials. 2023; 16(3):1147. https://doi.org/10.3390/ma16031147
Chicago/Turabian StyleQiao, Peng, Yiheng Ping, Hongping Ma, and Lei Lei. 2023. "Scintillation Properties of Lanthanide Doped Pb4Lu3F17 Nanoparticles" Materials 16, no. 3: 1147. https://doi.org/10.3390/ma16031147
APA StyleQiao, P., Ping, Y., Ma, H., & Lei, L. (2023). Scintillation Properties of Lanthanide Doped Pb4Lu3F17 Nanoparticles. Materials, 16(3), 1147. https://doi.org/10.3390/ma16031147