Reflecting the Quality Degradation of Engine Oil by the Thermal Diffusivity: Radiative and Nonradiative Analyses
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FTIR | Fourier transform infrared |
UV-Vis | Ultraviolet-Visible |
PL | Photoluminescence |
NMR | Nuclear magnetic resonance |
TL | Thermal lens |
MMDB | Mode-mismatched dual-beam |
SAE | Society of Automotive Engineers |
DSO | Digital storage oscilloscope |
He-Cd | Helium–Cadmium |
He-Ne | Helium–Neon |
CIE | International Commission on Illumination |
List of symbols | |
°C | Degree Celsius |
h | Hour |
cc | Cubic capacity |
km | Kilometre |
cm | Centimetre |
mm | Millimetre |
nm | Nanometre |
mW | Milliwatt |
λe | Pump beam wavelength (nm) |
λp | Probe beam wavelength (nm) |
Hz | Hertz (s−1) |
Pump beam radius at the sample (µm) | |
Probe beam radius at the sample(µm) | |
Probe beam radius at beam waist (µm) | |
Excitation beam waist radius (µm) | |
I0 | Intensity of probe beam at time = 0 |
I(t) | Intensity of probe beam at time = t |
Probe beam phase shift | |
tc | Characteristic time constant |
K | Thermal conductivity (W·m−1 K−1) |
D | Thermal diffusivity (m2 s−1) |
n | Refractive index |
ΔT | Change in temperature |
Refractive index gradient | |
Pth | Absorbed photothermal energy (J) |
A | Absorption coefficient of the sample (m−1) |
l | Path length of the cuvette (mm) |
m | Degree of mode mismatching |
f | Focal length of the convex lens (cm) |
d | Laser beam diameter (mm) |
On-axis phase shift | |
n2 | Nonlinear refractive index (m2·W−1) |
Effective length of the sample | |
α | Linear absorption coefficient (cm−1) |
µL | Microlitre |
References
- Sher, E. Environmental Aspect of Air Pollution. In Handbook of Air Pollution from Internal Combustion Engines—Pollution Formation and Control, 1st ed.; Academic Press: San Diego, CA, USA, 1998; Volume 1, pp. 27–42. [Google Scholar]
- Mayers, P.S.; Uyehara, O.A.; Newhall, H.K. Engine Exhaust Emissions. In Engine Emissions—Pollutant Formation and Measurement, 1st ed.; Springer, G.S., Patterson, D.J., Eds.; Plenum Press: New York, NY, USA; London, UK, 1973; Volume 1, pp. 1–31. [Google Scholar]
- Tan, D.; Wu, Y.; Lv, J.; Li, J.; Ou, X.; Meng, Y.; Lan, G.; Chen, Y.; Zhang, Z. Performance Optimization of a Diesel Engine Fueled with Hydrogen/Biodiesel with Water Addition Based on the Response Surface Methodology. Energy 2023, 263, 125869. [Google Scholar] [CrossRef]
- Nikolakopoulos, P.G.; Mavroudis, S.; Zavos, A. Lubrication Performance of Engine Commercial Oils with Different Performance Levels: The Effect of Engine Synthetic Oil Aging on Piston Ring Tribology under Real Engine Conditions. Lubricants 2018, 6, 90. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Vinu, R. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils. Lubricants 2015, 3, 54–79. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, N.; Feng, Y.; Michaelides, E.E.; Żyła, G.; Jing, D.; Zhang, X.; Norris, P.M.; Markides, C.N.; Mahian, O. A Review of Recent Advances in Thermophysical Properties at the Nanoscale: From Solid State to Colloids. Phys. Rep. 2020, 843, 1–81. [Google Scholar] [CrossRef]
- Sejkorová, M.; Hurtová, I.; Jilek, P.; Novák, M.; Voltr, O. Study of the Effect of Physicochemical Degradation and Contamination of Motor Oils on Their Lubricity. Coatings 2021, 11, 60. [Google Scholar] [CrossRef]
- Fraenza, C.C.; Förster, E.; Guthausen, G.; Nirschl, H.; Anoardo, E. Use of 1H-NMR Spectroscopy, Diffusometry and Relaxometry for the Characterization of Thermally-Induced Degradation of Motor Oils. Tribol. Int. 2021, 153, 106620. [Google Scholar] [CrossRef]
- Tahmasebi Sulgani, M.; Karimipour, A. Improve the Thermal Conductivity of 10w40-Engine Oil at Various Temperature by Addition of Al2O3/Fe2O3 Nanoparticles. J. Mol. Liq. 2019, 283, 660–666. [Google Scholar] [CrossRef]
- Raposo, H.; Farinha, J.T.; Fonseca, I.; Ferreira, L.A. Condition Monitoring with Prediction Based on Diesel Engine Oil Analysis: A Case Study for Urban Buses. Actuators 2019, 8, 14. [Google Scholar] [CrossRef]
- Motamen Salehi, F.; Morina, A.; Neville, A. The Effect of Soot and Diesel Contamination on Wear and Friction of Engine Oil Pump. Tribol. Int. 2017, 115, 285–296. [Google Scholar] [CrossRef]
- Alshehawy, A.M.; Mansour, D.E.A.; Ghali, M. Photoluminescence Based Condition Assessment of Aged Transformer Oil. In Proceedings of the 19th International Middle-East Power Systems Conference, Cairo, Egypt, 17–19 December 2017. [Google Scholar]
- van de Voort, F.R.; Sedman, J.; Cocciardi, R.A.; Pinchuk, D. FTIR Condition Monitoring of In-Service Lubricants: Ongoing Developments and Future Perspectives. Tribol. Trans. 2006, 49, 410–418. [Google Scholar] [CrossRef]
- Macián, V.; Tormos, B.; Gómez, Y.A.; Salavert, J.M. Proposal of an FTIR Methodology to Monitor Oxidation Level in Used Engine Oils: Effects of Thermal Degradation and Fuel Dilution. Tribol. Trans. 2012, 55, 872–882. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Van Stryland, E.W. Sensitive Measurement of Optical Nonlinearities Using a Single Beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef]
- Sebastian, R.; Swapna, M.S.; Sarithadevi, H.V.; Raj, V.; Hari, M.; Sankararaman, S. The Role of Hydroxyl Ions in the Evolution of Optical Nonlinearity of CuO: A Z Scan Study. Mater. Res. Exp. 2019, 6, 116202. [Google Scholar] [CrossRef]
- Dais, P.; Hatzakis, E. Quality Assessment and Authentication of Virgin Olive Oil by NMR Spectroscopy: A Critical Review. Anal. Chim. Acta 2013, 765, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Georges, J. Advantages and Limitations of Thermal Lens Spectrometry over Conventional Spectrophotometry for Absorbance Measurements. Talanta 1999, 48, 501–509. [Google Scholar] [CrossRef]
- Franko, M.; Tran, C.D. Analytical Thermal Lens Instrumentation. Rev. Sci. Instrum. 1996, 67, 1–18. [Google Scholar] [CrossRef]
- Raj, V.; Swapna, M.S.; Sarithadevi, H.V.; Sankararaman, S. Nonradiative Analysis of Adulteration in Coconut Oil by Thermal Lens Technique. Appl. Phys. B 2019, 125, 113. [Google Scholar] [CrossRef]
- Shen, J.; Lowe, R.D.; Snook, R.D. A Model for Cw Laser Induced Mode-Mismatched Dual-Beam Thermal Lens Spectrometry. Chem. Phys. 1992, 165, 385–396. [Google Scholar] [CrossRef]
- Marbello, O.; Valbuena, S.; Racedo, F.J. Non-Linear Optical Response of Edible Oils by Means of the Z-Scan Technique. J. Phys. Conf. Ser. 2019, 1219, 012008. [Google Scholar] [CrossRef]
- Dominguez-Rosado, E.; Pichtel, J. Chemical Characterization of Fresh, Used and Weathered Motor Oil via GC/MS, NMR and FTIR Techniques. Proc. Indiana Acad. Sci. 2003, 112, 109–111. [Google Scholar]
- Odebunmi, E.O.; Adeniyi, S.A. Infrared and Ultraviolet Spectrophotometric Analysis of Chromatographic Fractions of Crude Oils and Petroleum Products. Bull. Chem. Soc. Ethiop. 2007, 21, 135–140. [Google Scholar] [CrossRef]
- Wolak, A.; Krasodomski, W.; Zając, G. FTIR Analysis and Monitoring of Used Synthetic Oils Operated under Similar Driving Conditions. Friction 2020, 8, 995–1006. [Google Scholar] [CrossRef]
- Kupareva, A.; Mäki-Arvela, P.; Grénman, H.; Eränen, K.; Sjöholm, R.; Reunanen, M.; Murzin, D.Y. Chemical Characterization of Lube Oils. Energy Fuels 2013, 27, 27–34. [Google Scholar] [CrossRef]
- Diaby, M.; Sablier, M.; Le Negrate, A.; El Fassi, M.; Bocquet, J. Understanding Carbonaceous Deposit Formation Resulting from Engine Oil Degradation. Carbon 2009, 47, 355–366. [Google Scholar] [CrossRef]
- Swapna, M.S.; Raj, V.; Sankararaman, S. Allotropic Transformation Instigated Thermal Diffusivity of Soot Nanofluid: Thermal Lens Study. Phys. Fluids 2019, 31, 117106. [Google Scholar] [CrossRef]
- Lockwood, F.E.; Zhang, Z.G.; Choi, S.U.S.; Yu, W. Thermal Characteristics of New and Used Diesel Engine Oils. In Proceedings of the 2nd World Tribology Congress, Vienna, Austria, 3–7 September 2001. [Google Scholar]
- Holland, T.; Abdul-Munaim, A.M.; Mandrell, C.; Karunanithy, R.; Watson, D.G.; Sivakumar, P. UV-Visible Spectrophotometer for Distinguishing Oxidation Time of Engine Oil. Lubricants 2021, 9, 37. [Google Scholar] [CrossRef]
- Raj, V.; Soumya, S.; Swapna, M.S.; Sankararaman, S. Nondestructive Evaluation of Heat Trap Mechanism in Coconut Oil—A Thermal Lens Study. Mater. Res. Exp. 2018, 5, 115504. [Google Scholar] [CrossRef]
- Panigrahi, S.K.; Mishra, A.K. Inner Filter Effect Mediated Red-Shift in Synchronous and Total Synchronous Fluorescence Spectra as a Tool to Monitor Quality of Oils and Petrochemicals. Fuel 2020, 267, 117174. [Google Scholar] [CrossRef]
- Panigrahi, S.K.; Thakur, S.; Sarathi, R.; Mishra, A.K. Understanding the Physico-Chemical Properties of Thermally Aged Natural Ester Oil Adopting Fluorescent Technique. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3460–3470. [Google Scholar] [CrossRef]
- Swapna, M.S.; Sankararaman, S. From Futile to Fruitful: Diesel Soot as White Light Emitter. J. Fluoresc. 2018, 28, 543–549. [Google Scholar] [CrossRef]
- Swapna, M.S.; Sankararaman, S. Blue Light Emitting Diesel Soot for Photonic Applications. Mater. Res. Express 2018, 5, 016203. [Google Scholar] [CrossRef]
- Ryder, A.G. Analysis of Crude Petroleum Oils Using Fluorescence Spectroscopy. In Reviews in Fluorescence; Springer: Boston, MA, USA, 2005; pp. 169–198. [Google Scholar]
- Raj, V.; Swapna, M.S.; Sankararaman, S. Nondestructive Radiative Evaluation of Adulteration in Coconut Oil. Eur. Phys. J. Plus 2018, 133, 544. [Google Scholar] [CrossRef]
- Abdul Jameel, A.G. Identification and Quantification of Hydrocarbon Functional Groups in Gasoline Using 1H-NMR Spectroscopy for Property Prediction. Molecules 2021, 26, 6989. [Google Scholar] [CrossRef] [PubMed]
- Förster, E.; Becker, J.; Dalitz, F.; Görling, B.; Luy, B.; Nirschl, H.; Guthausen, G. NMR Investigations on the Aging of Motor Oils. Energy Fuels 2015, 29, 7204–7212. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, 12–17 November 1995. [Google Scholar]
- Swapna, M.S.; Vimal, R.; Kumar, K.S.; Sankararaman, S. Soot Effected Sample Entropy Minimization in Nano Fl Uid for Thermal System Design: A Thermal Lens Study. J. Mol. Liq. 2020, 318, 114038. [Google Scholar] [CrossRef]
- Swapna, M.S.; Sankararaman, S. Generalized Theory of Thermal Conductivity for Different Media: Solids to Nanofluids. J. Phys. Chem. C 2019, 123, 23264–23271. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gokul, V.; Swapna, M.N.S.; Korte, D.; Sankararaman, S.I. Reflecting the Quality Degradation of Engine Oil by the Thermal Diffusivity: Radiative and Nonradiative Analyses. Materials 2023, 16, 773. https://doi.org/10.3390/ma16020773
Gokul V, Swapna MNS, Korte D, Sankararaman SI. Reflecting the Quality Degradation of Engine Oil by the Thermal Diffusivity: Radiative and Nonradiative Analyses. Materials. 2023; 16(2):773. https://doi.org/10.3390/ma16020773
Chicago/Turabian StyleGokul, Vijayakumar, Mohanachandran Nair Sindhu Swapna, Dorota Korte, and Sankaranarayana Iyer Sankararaman. 2023. "Reflecting the Quality Degradation of Engine Oil by the Thermal Diffusivity: Radiative and Nonradiative Analyses" Materials 16, no. 2: 773. https://doi.org/10.3390/ma16020773
APA StyleGokul, V., Swapna, M. N. S., Korte, D., & Sankararaman, S. I. (2023). Reflecting the Quality Degradation of Engine Oil by the Thermal Diffusivity: Radiative and Nonradiative Analyses. Materials, 16(2), 773. https://doi.org/10.3390/ma16020773