Synthesis of RGO/Cu@ FeAl2O4 Composites and Its Applications in Electromagnetic Microwave Absorption Coatings
Abstract
:1. Introduction
2. Experimental Process
3. Results and Discussions
3.1. Morphologies and Microstructure
3.2. Magnetic Properties
3.3. Microwave Absorption Properties
4. Conclusions
- The best absorption performance was obtained for the FeAl2O4 composite doped with 10 wt.% RGO/Cu composite powder. The reflection loss of the composite at 15 GHz can reach −16 dB and the effective bandwidth is 2 GHz.
- The effect of the introduction of RGO/Cu is an increase in the conductivity of the composite material due to its good conductivity. On the other hand, the complex surface helps to increase the reflection and scattering of electromagnetic waves in the absorption body. In addition, the introduction of RGO/Cu helps to increase the heterogeneous interface polarization, defect polarization, and conductivity loss of the composites.
- The results show that the introduction of RGO/Cu composite powder can effectively optimize the impedance matching of single FeAl2O4 ferrite and improve the electromagnetic wave absorption performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acharya, S.; Alegaonkar, P.; Datar, S. Effect of formation of heterostructure of SrAl4Fe8O19/RGO/PVDF on the microwave absorption properties of the composite. Chem. Eng. J. 2019, 374, 144–154. [Google Scholar] [CrossRef]
- Adebayo, L.; Soleimani, H.; Yahya, N.; Abbas, Z.; Wahaab, F.; Ayinla, R.; Ali, H. Recent advances in the development OF Fe3O4-BASED microwave absorbing materials. Ceram. Int. 2020, 46, 1249–1268. [Google Scholar] [CrossRef]
- Almessiere, M.; Slimani, Y.; Trukhanov, A.; Sadaqat, A.; Korkmaz, A.; Algarou, N.; Aydın, H.; Baykal, A.; Toprak, M. Review on functional bi-component nanocomposites based on hard/soft ferrites: Structural, magnetic, electrical and microwave absorption properties. Nano-Struct. Nano-Objects 2021, 26, 100728. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Q.; Fu, Y.; Liu, T. A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 2021, 86, 91–109. [Google Scholar] [CrossRef]
- Ding, G.; Chen, C.; Tai, H.; Tang, Z.; Wang, Z.; Cheng, G.; Wan, X. Structural characterization and microwave absorbing performance of CuFe2O4/RGO composites. J. Solid State Chem. 2021, 297, 122051. [Google Scholar] [CrossRef]
- Hou, T.; Jia, Z.; Wang, B.; Li, H.; Liu, X.; Bi, L.; Wu, G. MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber. Chem. Eng. J. 2021, 414, 128875. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Liu, H.; Jin, S.; Wu, G. Interconnected magnetic carbon@ NixCo1-xFe2O4 nanospheres with core–shell structure: An efficient and thin electromagnetic wave absorber. J. Colloid Interface Sci. 2022, 606, 526–536. [Google Scholar] [CrossRef]
- Zhang, H.; Jia, Z.; Wang, B.; Wu, X.; Sun, T.; Liu, X.; Bi, L.; Wu, G. Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@ mesoporous hollow carbon spheres. Chem. Eng. J. 2021, 421, 129960. [Google Scholar] [CrossRef]
- Wang, L.; Guan, Y.; Qiu, X.; Zhu, H.; Pan, S.; Yu, M.; Zhang, Q. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal–organic framework. Chem. Eng. J. 2017, 326, 945–955. [Google Scholar] [CrossRef]
- Wang, X.; Yin, L.; Chen, C.; Yu, J.; Zhou, X.; Wang, H.; Xu, B.; Wei, S. Synthesis of tremella-like graphene@SiC nano-structure for electromagnetic wave absorbing material application. J. Alloys Compd. 2018, 741, 205–210. [Google Scholar] [CrossRef]
- Lyu, L.; Wang, F.; Zhang, X.; Qiao, J.; Liu, C.; Liu, J. CuNi alloy/carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon 2021, 172, 488–496. [Google Scholar] [CrossRef]
- Zhao, D.; Luo, F.; Zhou, W.; Zhu, D. Microwave absorption properties and complex permittivity of Fe/FeAl2O4 coatings deposited by reactive plasma spraying Al/Fe2O3 powders. Surf. Coat. Technol. 2011, 205, 4254–4259. [Google Scholar] [CrossRef]
- Trukhanov, A.; Turchenko, V.; Kostishin, V.; Damay, F.; Porcher, F.; Lupu, N.; Bozzo, B.; Fina, I.; Polosan, S.; Silibin, M.; et al. The origin of the dual ferroic properties in quasi-centrosymmetrical SrFe12-xInx19 hexaferrites. J. Alloys Compd. 2021, 886, 161249. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Kokovkin, V.V.; Volchek, V.V.; Zhivulin, V.E.; Abramov, P.A.; Cherkasova, N.A.; Sun, Z.; Sayyed, M.I.; Tishkevich, D.I.; Trukhanov, A.V. Electrocatalytic activity of various hexagonal ferrites in OER process. Mater. Chem. Phys. 2021, 270, 124818. [Google Scholar] [CrossRef]
- Trukhanov, A.; Kostishyn, V.; Panina, L.; Korovushkin, V.; Turchenko, V.; Thakur, P.; Thakur, A.; Yang, Y.; Vinnik, D.; Yakovenko, E.; et al. Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compouds 2018, 754, 247–256. [Google Scholar] [CrossRef]
- Trukhanov, A.; Turchenko, V.; Bobrikov, I.; Kazakevich, I.; Balagurov, A. Crystal structure and magnetic properties of the BaFe12-xAlxO19(x = 0.1–1.2) solid solution. J. Magn. Magn. Mater. 2015, 393, 253–259. [Google Scholar] [CrossRef]
- Frolova, L.A.; Saltykov, D.; Kushnerov, O. Investigation structure magnetic and microwave absorption properties of nanocomposite PVA/Graphite/CoFe1.97Ce0.03O4. ECS J. Solid State Sci. Technol. 2022, 11, 121011. [Google Scholar] [CrossRef]
- Cui, G.; Lu, Y.; Zhou, W.; Lv, X.; Hu, J.; Zhang, G.; Gu, G. Excellent microwave absorption properties derived from the synthesis of hollow Fe3O4@ reduced graphite oxide (RGO) nanocomposites. Nanomaterials 2019, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Du, Y.; Wu, B.; Han, B.; Dong, S.; Han, X.; Xu, P. Fabrication of PPy Nanosphere/rGO Composites via a Facile Self-Assembly Strategy for Durable Microwave Absorption. Polymers 2018, 10, 998. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.; Tang, W.; Song, Z.; Jiang, Q.; Jiang, Z.; Xie, Z. Synthesis of sandwich-like Co15Fe85@C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance. Nanoscale 2020, 36, 18790–18799. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, K.; Wang, J.; Shah, T.; Zhang, Q.; Zhang, B. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 2021, 172, 1–14. [Google Scholar] [CrossRef]
- Adebayo, L.L.; Soleimani, H.; Guan, B.H.; Yahya, N.; Öchsner, A.; Sabet, M.; Yusuf, J.Y.; Ali, H. A simple route to prepare Fe3O4@C microspheres as electromagnetic wave absorbing material. J. Mater. Res. Technol. 2021, 12, 1552–1563. [Google Scholar] [CrossRef]
- Gairola, P.; Purohit, L.; Gairola, S.; Bhardwaj, P.; Kaushik, S. Enhanced electromagnetic absorption in ferrite and tantalum pentoxide based polypyrrole nanocomposite. Prog. Nat. Sci. Mater. Int. 2019, 29, 170–176. [Google Scholar] [CrossRef]
- Abdullah, B.; Tahir, D.; Fatimah, S. New types composite copper (Cu) and activated carbon (C) for electromagnetic wave absorber materials. J. Phys. Conf. Ser. 2019, 1242, 012031. [Google Scholar] [CrossRef]
- Ma, M.; Li, W.; Tong, Z.; Yang, Y.; Ma, Y.; Cui, Z.; Wang, R.; Lyu, P.; Huang, W. 1D flower-like Fe3O4@SiO2@MnO2 nanochains inducing RGO self-assembly into aerogels for high-efficient microwave absorption. Mater. Des. 2020, 188, 108462. [Google Scholar] [CrossRef]
- Wen, G.; Zhao, X.; Liu, Y.; Zhang, H.; Wang, C. Facile synthesis of RGO/Co@Fe@Cu hollow nanospheres with efficient broadband electromagnetic wave absorption. Chem. Eng. J. 2019, 372, 1–11. [Google Scholar] [CrossRef]
- Shu, R.; Li, X.; Wu, Y.; Zhang, J.; Wan, Z. Fabrication of magnesium ferrite microspheres decorated nitrogen-doped reduced graphene oxide hybrid composite toward high-efficiency electromagnetic wave absorption. J. Alloys Compd. 2021, 859, 157865. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, Z.; Lv, X.; Zhang, X.; Zhang, Y.; Zhang, J.; Zhang, L.; Gong, C. Microwave absorption performance of reduced graphene oxide with negative imaginary permeability. J. Phys. D Appl. Phys. 2020, 53, 02LT01. [Google Scholar] [CrossRef]
- Mendonça, E.C.; Jesus, C.B.R.; Folly, W.S.D.; Meneses, C.T.; Duque, J.G.S.; Coelho, A.A. Temperature dependence of coercive field of ZnFe2O4 nanoparticles. J. Appl. Phys. 2012, 111, 3691792. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Li, C.; Waterhouse, G.I.N.; Zhang, Z. ZnFe2O4@ PDA@ Polypyrrole composites with efficient electromagnetic wave absorption properties in the 18–40 GHz region. J. Mater. Sci. 2021, 56, 10876–10891. [Google Scholar] [CrossRef]
- Meng, F.; Wang, H.; Huang, F.; Guo, Y.; Wang, Z.; Hui, D.; Zhou, Z. Graphene-based microwave absorbing composites: A review and prospective. Compos. Part B Eng. 2018, 137, 260–277. [Google Scholar] [CrossRef]
- Huang, L.; Liu, X.; Yu, R. Enhanced microwave absorption properties of rod-shaped Fe2O3/Fe3O4/MWCNTs composites. Prog. Nat. Sci. Mater. Int. 2018, 28, 288–295. [Google Scholar] [CrossRef]
- Zhou, J.; Shu, X.; Wang, Y.; Ma, J.; Liu, Y.; Shu, R.; Kong, L. Enhanced microwave absorption properties of (1−x)CoFe2O4/xCoFe composites at multiple frequency bands. J. Magn. Magn. Mater. 2020, 493, 1656199. [Google Scholar] [CrossRef]
- Kim, K.; Chaudhari, K.N.; Kim, S.; Kim, Y.; Shin, K.S. Chemistry, Facile single-step synthesis of Cu-rGO nanocomposite through simultaneous reduction process and its peroxidase mimic activity. J. Ind. Eng. Chem. 2021, 95, 101013. [Google Scholar] [CrossRef]
- Qiao, Y.; Xiao, J.; Jia, Q.; Lu, L.; Fan, H. Preparation and microwave absorption properties of ZnFe2O4/polyaniline/graphene oxide composite. Results Phys. 2019, 13, 102221. [Google Scholar] [CrossRef]
- Zhang, M.; Fang, X.; Zhang, Y.; Guo, J.; Gong, C.; Estevez, D.; Qin, F.; Zhang, J. Ultralight reduced graphene oxide aerogels prepared by cation-assisted strategy for excellent electromagnetic wave absorption. Nanotechnology 2020, 31, 275707. [Google Scholar] [CrossRef]
- Lv, X.; Guo, J.; Zhao, C.; Wei, Y.; Zhang, J.; Wu, Z.; Gong, C. Investigation on the enhanced electromagnetism of Ni/RGO nanocomposites synthesized by an in-situ process. Mater. Lett. 2017, 201, 43–45. [Google Scholar] [CrossRef]
- Qin, M.; Zhang, L.; Zhao, X.; Wu, H. Lightweight Ni Foam-Based Ultra-Broadband Electromagnetic Wave Absorber. Adv. Funct. Mater. 2021, 31, 3436. [Google Scholar] [CrossRef]
- Bi, Y.; Ma, M.; Liao, Z.; Tong, Z.; Chen, Y.; Wang, R.; Ma, Y.; Wu, G. One-dimensional Ni@Co/C@PPy composites for superior electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 605, 483–492. [Google Scholar] [CrossRef]
B1 | B2 | B3 | B4 | B5 | |
---|---|---|---|---|---|
FeAl2O4 (wt.%) | 100 | 95.5 | 95 | 90 | 85 |
RGO/Cu (wt.%) | 0 | 0 | 5 | 10 | 15 |
Cu (wt.%) | 0 | 4.5 | 0 | 0 | 0 |
Ms (emu/g) | Mr (emu/g) | Hc | |
---|---|---|---|
B1 | 6.33 | 0.40 | 106.88 |
B2 | 6.08 | 0.45 | 121.70 |
B3 | 5.83 | 0.65 | 200.60 |
B4 | 5.74 | 0.56 | 174.02 |
B5 | 5.47 | 0.56 | 182.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, Z.; Deng, W.; Xu, J.; Wang, F.; Zhang, Z.; Hu, Q. Synthesis of RGO/Cu@ FeAl2O4 Composites and Its Applications in Electromagnetic Microwave Absorption Coatings. Materials 2023, 16, 740. https://doi.org/10.3390/ma16020740
Chu Z, Deng W, Xu J, Wang F, Zhang Z, Hu Q. Synthesis of RGO/Cu@ FeAl2O4 Composites and Its Applications in Electromagnetic Microwave Absorption Coatings. Materials. 2023; 16(2):740. https://doi.org/10.3390/ma16020740
Chicago/Turabian StyleChu, Zhenhua, Wenxing Deng, Jingxiang Xu, Fang Wang, Zheng Zhang, and Qingsong Hu. 2023. "Synthesis of RGO/Cu@ FeAl2O4 Composites and Its Applications in Electromagnetic Microwave Absorption Coatings" Materials 16, no. 2: 740. https://doi.org/10.3390/ma16020740
APA StyleChu, Z., Deng, W., Xu, J., Wang, F., Zhang, Z., & Hu, Q. (2023). Synthesis of RGO/Cu@ FeAl2O4 Composites and Its Applications in Electromagnetic Microwave Absorption Coatings. Materials, 16(2), 740. https://doi.org/10.3390/ma16020740