On Structural and Magnetic Properties of Substituted SmCo5 Materials
Abstract
1. Introduction
2. Experimental
3. Computational Details
4. Results and Discussion
4.1. Structural Characterization
4.2. Ab Initio Electronic and Magnetic Properties for x = 0.5
4.3. Magnetic Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2010, 23, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H. The current and future status of rare earth permanent magnets. Scr. Mater. 2018, 154, 273–276. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, Y.; Liu, B.; Chang, C. Supply and demand of some critical metals and present status of their recycling in WEEE. Waste Manag. 2017, 65, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Weng, Z.; Haque, N.; Mudd, G.M.; Jowitt, S.M. Assessing the energy requirements and global warming potential of the production of rare earth elements. J. Clean. Prod. 2016, 139, 1282–1297. [Google Scholar] [CrossRef]
- Strnat, K.J.; Strnat, R.M. Rare earth-cobalt permanent magnets. J. Magn. Magn. Mater. 1991, 100, 38–56. [Google Scholar] [CrossRef]
- Skokov, K.; Gutfleisch, O. Heavy rare earth free, free rare earth and rare earth free magnets—Vision and reality. Scr. Mater. 2018, 154, 289–294. [Google Scholar] [CrossRef]
- Pan, S. Introduction. In Rare Earth Permanent-Magnet Alloys’ High Temperature Phase Transformation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–26. [Google Scholar] [CrossRef]
- Strnat, K.; Hoffer, G.; Olson, J.; Ostertag, W.; Becker, J.J. A Family of New Cobalt-Base Permanent Magnet Materials. J. Appl. Phys. 1967, 38, 1001–1002. [Google Scholar] [CrossRef]
- Benz, M.G.; Martin, D.L. Initial Observations: Cobalt-Mischmetal-Samarium Permanent Magnet Alloys. J. Appl. Phys. 1971, 42, 1534–1535. [Google Scholar] [CrossRef]
- Tewari, R.A. Magnetic properties of a mischmetal-cobalt alloy. Bull. Mater. Sci. 1980, 2, 177–180. [Google Scholar] [CrossRef]
- Zuo, W.-L.; Zuo, S.-L.; Li, R.; Zhao, T.-Y.; Hu, F.-X.; Sun, J.-R.; Zhang, X.-F.; Liu, J.P.; Shen, B.-G. High performance misch-metal (MM)-Fe-B magnets prepared by melt spinning. J. Alloy Compd. 2017, 695, 1786–1792. [Google Scholar] [CrossRef]
- Li, R.; Shang, R.X.; Xiong, J.F.; Liu, D.; Kuang, H.; Zuo, W.L.; Zhao, T.Y.; Sun, J.R.; Shen, B.G. Magnetic properties of (misch metal, Nd)-Fe-B melt-spun magnets. AIP Adv. 2017, 7, 056207. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhong, Z. Research and development of Ce-containing Nd2Fe14 B-type alloys and permanent magnetic materials. J. Mater. Sci. Technol. 2017, 33, 1087–1096. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Argaman, N.; Makov, G. Density functional theory: An introduction. Am. J. Phys. 2000, 68, 69–79. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kryachko, E.S. On the original proof by reductio ad absurdum of the Hohenberg-Kohn theorem for many-electron Coulomb systems. Int. J. Quantum Chem. 2005, 103, 818–823. [Google Scholar] [CrossRef]
- David, G.; Guihéry, N.; Ferré, N. What Are the Physical Contents of Hubbard and Heisenberg Hamiltonian Interactions Extracted from Broken Symmetry DFT Calculations in Magnetic Compounds? J. Chem. Theory Comput. 2017, 13, 6253–6265. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- van der Marel, D.; Sawatzky, G.A. Electron-electron interaction and localization in d and f transition metals. Phys. Rev. B 1988, 37, 10674–10684. [Google Scholar] [CrossRef] [PubMed]
- Okhotnikov, K.; Charpentier, T.; Cadars, S. Supercell program: A combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J. Chemin. 2016, 8, 17. [Google Scholar] [CrossRef]
- Herath, U.; Tavadze, P.; He, X.; Bousquet, E.; Singh, S.; Muñoz, F.; Romero, A.H. PyProcar: A Python library for electronic structure pre/post-processing. Comput. Phys. Commun. 2020, 251, 107080. [Google Scholar] [CrossRef]
- Bartashevich, M.; Goto, T.; Radwanski, R.; Korolyov, A. Magnetic anisotropy and high-field magnetization process of CeCo5. J. Magn. Magn. Mater. 1994, 131, 61–66. [Google Scholar] [CrossRef]
- Gabay, A.; Hu, X.; Hadjipanayis, G. Preparation of YCo5, PrCo5 and SmCo5 anisotropic high-coercivity powders via mechanochemistry. J. Magn. Magn. Mater. 2014, 368, 75–81. [Google Scholar] [CrossRef]
- Pang, H.; Qiao, L.; Li, F.S. Calculation of magnetocrystalline anisotropy energy in NdCo5. Phys. Status Solidi B 2009, 246, 1345–1350. [Google Scholar] [CrossRef]
- Wei, X.Z.; Hu, S.J.; Zeng, D.C.; Kou, X.C.; Liu, Z.Y.; Bruck, E.; de Boer, F.R. Magnetic and crystallographic properties of Ce2Co17–xGax compounds. J. Alloy Compd. 1998, 279, 301–305. [Google Scholar] [CrossRef]
- Liu, Q.; Liang, J.; Rao, G.; Tang, W.; Sun, J.; Chen, X.; Shen, B. Structure and uniaxial magnetocrystalline anisotropy of intermetallic compounds La2Co17−xTix. Appl. Phys. Lett. 1997, 71, 1869–1871. [Google Scholar] [CrossRef]
- Khan, Y. On the crystal structures of the R2Co17 intermetallic compounds. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1973, 29, 2502–2507. [Google Scholar] [CrossRef]
- Khan, Y. A contribution to the Sm–Co phase diagram. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1974, 30, 861–864. [Google Scholar] [CrossRef]
- Johnson, Q.; Wood, D.H.; Smith, G.S.; Ray, A.E. Refinement of Th2Zn17 structure: Pr2Fe. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1968, 24, 274–276. [Google Scholar] [CrossRef]
- Chen, J.; Wang, F.; Wang, F.; Meng, F.; Zhang, J. Phase structure and magnetic properties of La/Ce substituted nanocomposite SmCo5/α-Fe magnets prepared by high energy ball milling and subsequent annealing. J. Magn. Magn. Mater. 2020, 521, 167534. [Google Scholar] [CrossRef]
- Grånäs, O.; Di Marco, I.; Thunström, P.; Nordström, L.; Eriksson, O.; Björkman, T.; Wills, J. Charge self-consistent dynamical mean-field theory based on the full-potential linear muffin-tin orbital method: Methodology and applications. Comput. Mater. Sci. 2012, 55, 295–302. [Google Scholar] [CrossRef]
- Söderlind, P.; Landa, A.; Locht, I.L.M.; Åberg, D.; Kvashnin, Y.; Pereiro, M.; Däne, M.; Turchi, P.E.A.; Antropov, V.P.; Eriksson, O. Prediction of the new efficient permanent magnet SmCoNiFe3. Phys. Rev. B 2017, 96, 100404. [Google Scholar] [CrossRef]
- Locht, I.L.M.; Kvashnin, Y.O.; Rodrigues, D.C.M.; Pereiro, M.; Bergman, A.; Bergqvist, L.; Lichtenstein, A.I.; Katsnelson, M.I.; Delin, A.; Klautau, A.B.; et al. Standard model of the rare earths analyzed from the Hubbard I approximation. Phys. Rev. B 2016, 94, 085137. [Google Scholar] [CrossRef]
- Brooks, M.S.S.; Eriksson, O.; Wills, J.M.; Johansson, B. Density Functional Theory of Crystal Field Quasiparticle Excitations and theAb InitioCalculation of Spin Hamiltonian Parameters. Phys. Rev. Lett. 1997, 79, 2546–2549. [Google Scholar] [CrossRef]
- Giaremis, S.; Katsikas, G.; Sempros, G.; Gjoka, M.; Sarafidis, C.; Kioseoglou, J. Ab initio, artificial neural network predictions and experimental synthesis of mischmetal alloying in Sm–Co permanent magnets. Nanoscale 2022, 14, 5824–5839. [Google Scholar] [CrossRef]
- Gabay, A.M.; Larson, P.; Mazin, I.I.; Hadjipanayis, G.C. Magnetic states and structural transformations in Sm(Co,Cu)5 and Sm(Co,Fe,Cu)5 permanent magnets. J. Phys. D Appl. Phys. 2005, 38, 1337–1341. [Google Scholar] [CrossRef]
- Coey, J.M.D. Hard Magnetic Materials: A Perspective. IEEE Trans. Magn. 2011, 47, 4671–4681. [Google Scholar] [CrossRef]
- Al-Omari, I.; Skomski, R.; Thomas, R.; Leslie-Pelecky, D.; Sellmyer, D. High-temperature magnetic properties of mechanically alloyed SmCo5 and YCo5 magnets. IEEE Trans. Magn. 2001, 37, 2534–2536. [Google Scholar] [CrossRef]
- Irkhin, Y.P.; Irkhin, V.Y. The anion and cation effects in the magnetic anisotropy of rare-earth compounds: Charge screening by conduction electrons. Phys. Solid State 2000, 42, 1087–1093. [Google Scholar] [CrossRef]
- Chen, C.H.; Walmer, M.S.; Walmer, M.H.; Gong, W.; Ma, B.-M. The relationship of thermal expansion to magnetocrystalline anisotropy, spontaneous magnetization, and Tc for permanent magnets. J. Appl. Phys. 1999, 85, 5669–5671. [Google Scholar] [CrossRef]
- Nguyen, M.C.; Yao, Y.; Wang, C.-Z.; Ho, K.-M.; Antropov, V.P. Magnetocrystalline anisotropy in cobalt based magnets: A choice of correlation parameters and the relativistic effects. J. Phys. Condens. Matter 2018, 30, 195801. [Google Scholar] [CrossRef]
- Larson, P.; Mazin, I.I.; Papaconstantopoulos, D.A. Calculation of magnetic anisotropy energy in SmCo5. Phys. Rev. B 2003, 67, 214405. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Müller, T.; Yurramendi, L. Rare Earths and the Balance Problem: How to Deal with Changing Markets? J. Sustain. Met. 2018, 4, 126–146. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010; p. 242. [Google Scholar] [CrossRef]
x | a = b (Å) | c (Å) | c/a |
---|---|---|---|
0.1 | 4.9973(10) | 3.9780(9) | 0.7960 |
0.3 | 4.9944(7) | 3.9869(6) | 0.7983 |
0.5 | 4.9878(14) | 3.9913(12) | 0.8002 |
0.7 | 4.9849(15) | 3.9975(13) | 0.8019 |
1.0 | 4.9557(6) | 4.0212(8) | 0.8114 |
Atomic Average | m/atom (μB/atom) |
---|---|
Sm | −0.33 |
La | −0.32 |
Ce | −1.29 |
Co (2c) | 1.64 |
Co (3g) | 1.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gjoka, M.; Sempros, G.; Giaremis, S.; Kioseoglou, J.; Sarafidis, C. On Structural and Magnetic Properties of Substituted SmCo5 Materials. Materials 2023, 16, 547. https://doi.org/10.3390/ma16020547
Gjoka M, Sempros G, Giaremis S, Kioseoglou J, Sarafidis C. On Structural and Magnetic Properties of Substituted SmCo5 Materials. Materials. 2023; 16(2):547. https://doi.org/10.3390/ma16020547
Chicago/Turabian StyleGjoka, Margariti, Georgios Sempros, Stefanos Giaremis, Joseph Kioseoglou, and Charalampos Sarafidis. 2023. "On Structural and Magnetic Properties of Substituted SmCo5 Materials" Materials 16, no. 2: 547. https://doi.org/10.3390/ma16020547
APA StyleGjoka, M., Sempros, G., Giaremis, S., Kioseoglou, J., & Sarafidis, C. (2023). On Structural and Magnetic Properties of Substituted SmCo5 Materials. Materials, 16(2), 547. https://doi.org/10.3390/ma16020547