The Spatial Correlation and Anisotropy of β-(AlxGa1−x)2O3 Single Crystal
Abstract
1. Introduction
2. Material Growth and Characterization Methods
3. Results and Discussion
3.1. Crystal Structure and Composition
3.2. Raman Scattering Spectroscopy
3.3. Spatial Correlation of Raman Phonons
3.4. In-Plane Anisotropy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, D.; Guo, Q.; Chen, Z.; Wu, Z.; Li, P.; Tang, W. Review of Ga2O3-based optoelectronic devices. Mater. Today Phys. 2019, 11, 1240–1248. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, Z.; Gao, Z.; Qian, Q.; Hua, M. Tunable Properties of Novel Ga2O3 Monolayer for Electronic and Optoelectronic Applications. ACS Appl. Mater. Interfaces 2020, 12, 30659–30669. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Li, X.; Han, G.; Huang, L.; Li, F.; Tang, W.; Zhang, J.; Hao, Y. (AlGa)2O3 solar-blind photodetectors on sapphire with wider bandgap and improved responsivity. Opt. Mater. Express 2017, 7, 1240–1248. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Murakami, H.; Kumagai, Y.; Koukitu, A.; Kuramata, A.; Masui, T.; Yamakoshi, S. Recent progress in Ga2O3 power devices. Semicond. Sci. Technol. 2016, 31, 034001. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Ma, T.; Cui, X.; Ren, F.-F.; Gu, S.; Zhang, R.; Zheng, Y.; Ringer, S.P.; Fu, L.; et al. Identification and modulation of electronic band structures of single-phase β-(AlxGa1-x)2O3 alloys grown by laser molecular beam epitaxy. Appl. Phys. Lett. 2018, 113, 041901. [Google Scholar] [CrossRef]
- Wang, T.; Li, W.; Ni, C.; Janotti, A. Band Gap and Band Offset of Ga2O3 and (AlxGa1-x)2O3 Alloys. Phys. Rev. Appl. 2018, 10, 011003. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, Q.; Li, Y.; Hu, Z.; Zhang, Y.; Ma, J.; Yao, Y.; Zuo, Y.; Feng, Q.; Zhang, Y.; et al. Heterogrowth of β-(AlxGa1-x)2O3 Thin Films on Sapphire Substrates. Cryst. Growth Des. 2022, 22, 3698–3707. [Google Scholar] [CrossRef]
- Okumura, H.; Kato, Y.; Oshima, T.; Palacios, T. Demonstration of lateral field-effect transistors using Sn-doped β-(AlGa)2O3 (010). Jpn. J. Appl. Phys. 2019, 58, SBBD12. [Google Scholar] [CrossRef]
- Ghosh, K.; Singisetti, U. Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement. J. Mater. Res. 2017, 32, 4142–4152. [Google Scholar] [CrossRef]
- Huang, S.-S.; Lopez, R.; Paul, S.; Neal, A.T.; Mou, S.; Houng, M.-P.; Li, J.V. β-Ga2O3 defect study by steady-state capacitance spectroscopy. Jpn. J. Appl. Phys. 2018, 57, 091101. [Google Scholar] [CrossRef]
- Neal, A.T.; Mou, S.; Lopez, R.; Li, J.V.; Thomson, D.B.; Chabak, K.D.; Jessen, G.H. Incomplete Ionization of a 110 meV Unintentional Donor in beta-Ga2O3 and its Effect on Power Devices. Sci. Rep. 2017, 7, 13218. [Google Scholar] [CrossRef] [PubMed]
- Peelaers, H.; Varley, J.B.; Speck, J.S.; Van de Walle, C.G. Structural and electronic properties of Ga2O3-Al2O3 alloys. Appl. Phys. Lett. 2018, 112, 242101. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y.; Dong, L.; Jia, R. First-principles calculations of electronic and optical properties of aluminum-doped β-Ga2O3 with intrinsic defects. Results Phys. 2017, 7, 1582–1589. [Google Scholar] [CrossRef]
- Kim, S.; Ryou, H.; Lee, I.G.; Shin, M.; Cho, B.J.; Hwang, W.S. Impact of Al doping on a hydrothermally synthesized β-Ga2O3 nanostructure for photocatalysis applications. RSC Adv. 2021, 11, 7338–7346. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, A.F.M.A.U.; Feng, Z.; Johnson, J.M.; Huang, H.-L.; Sarker, J.; Zhu, M.; Karim, M.R.; Mazumder, B.; Hwang, J.; Zhao, H. Phase transformation in MOCVD growth of (AlxGa1-x)2O3 thin films. APL Mater. 2020, 8, 031104. [Google Scholar] [CrossRef]
- Hilfiker, M.; Kilic, U.; Mock, A.; Darakchieva, V.; Knight, S.; Korlacki, R.; Mauze, A.; Zhang, Y.; Speck, J.; Schubert, M. Dielectric function tensor (1.5 eV to 9.0 eV), anisotropy, and band to band transitions of monoclinic β-(AlxGa1-x)2O3 (x ≤ 0.21) films. Appl. Phys. Lett. 2019, 114, 231901. [Google Scholar] [CrossRef]
- Chen, X.; Niu, W.; Wan, L.; Xia, C.; Cui, H.; Talwar, D.N.; Feng, Z.C. Microstructure and temperature-dependence of Raman scattering properties of β-(AlxGa1-x)2O3 crystals. Superlattices Microstruct. 2020, 140, 106469. [Google Scholar] [CrossRef]
- Kim, S.; Ryou, H.; Moon, J.; Lee, I.G.; Hwang, W.S. Codoping of Al and In atoms in β-Ga2O3 semiconductors. J. Alloys Compd. 2023, 931, 167502. [Google Scholar] [CrossRef]
- Sabino, F.P.; de Oliveira, L.N.; Da Silva, J.L.F. Role of atomic radius and d-states hybridization in the stability of the crystal structure of M2O3(M = Al, Ga, In) oxides. Phys. Rev. B 2014, 90, 155206. [Google Scholar] [CrossRef]
- Janzen, B.M.; Mazzolini, P.; Gillen, R.; Falkenstein, A.; Martin, M.; Tornatzky, H.; Maultzsch, J.; Bierwagen, O.; Wagner, M.R. Isotopic study of Raman active phonon modes in β-Ga2O3. J. Mater. Chem. C 2021, 9, 2311–2320. [Google Scholar] [CrossRef]
- Kranert, C.; Jenderka, M.; Lenzner, J.; Lorenz, M.; von Wenckstern, H.; Schmidt-Grund, R.; Grundmann, M. Lattice parameters and Raman-active phonon modes of β-(AlxGa1-x)2O3. J. Appl. Phys. 2015, 117, 125703. [Google Scholar] [CrossRef]
- Janzen, B.M.; Gillen, R.; Galazka, Z.; Maultzsch, J.; Wagner, M.R. First- and second-order Raman spectroscopy of monoclinic β−Ga2O3. Phys. Rev. Mater. 2022, 6, 054601. [Google Scholar] [CrossRef]
- Schmidt, C.; Zahn, D.R.T. Effect of impurities on the Raman spectra of spray-coated β-Ga2O3 thin films. J. Vac. Sci. Technol. A 2022, 40, 043404. [Google Scholar] [CrossRef]
- Dohy, D.; Lucazeau, G.; Revcolevschi, A. Raman spectra and valence force field of single-crystalline β-Ga2O3. J. Solid State Chem. 1982, 45, 180–192. [Google Scholar] [CrossRef]
- Bhattacharjee, J.; Sagdeo, A.; Singh, S.D. Determination of Al occupancy and local structure for β-(AlxGa1-x)2O3 alloys across nearly full composition range from Rietveld analysis. Appl. Phys. Lett. 2022, 120, 262101. [Google Scholar] [CrossRef]
- Bhattacharjee, J.; Singh, S.D. Observation of mixed-mode behavior of Raman active phonon modes for β-(AlxGa1-x)2O3 alloys. Appl. Phys. Lett. 2023, 122, 112101. [Google Scholar] [CrossRef]
- Krueger, B.W.; Dandeneau, C.S.; Nelson, E.M.; Dunham, S.T.; Ohuchi, F.S.; Olmstead, M.A.; Jones, J. Variation of Band Gap and Lattice Parameters of β-(AlxGa1-x)2O3 Powder Produced by Solution Combustion Synthesis. J. Am. Ceram. Soc. 2016, 99, 2467–2473. [Google Scholar] [CrossRef]
- Khan, T.M. Into the nature of Pd-dopant induced local phonon modes and associated disorders in ZnO; based on spatial correlation model. Mater. Chem. Phys. 2015, 153, 248–255. [Google Scholar] [CrossRef]
- Silva, R.L.d.S.e.; Franco Jr, A. Raman spectroscopy study of structural disorder degree of ZnO ceramics. Mater. Sci. Semicond. Process. 2020, 119, 105227. [Google Scholar] [CrossRef]
- Parayanthal, P.; Pollak, F.H. Raman Scattering in Alloy Semiconductors: “Spatial Correlation” Model. Phys. Rev. Lett. 1984, 52, 1822–1825. [Google Scholar] [CrossRef]
- Dev, G.S.; Sharma, V.; Singh, A.; Baghel, V.S.; Yanagida, M.; Nagataki, A.; Tripathi, N. Raman spectroscopic study of ZnO/NiO nanocomposites based on spatial correlation model. RSC Adv. 2019, 9, 26956–26960. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yao, W.H.; Wang, J.B.; Lu, H.Q.; Sun, H.H.; Wang, X.; Pang, Z.L. Quality of ZnSe/GaAs epilayers studied by spatial correlation model of Raman scattering. Appl. Phys. Lett. 1993, 62, 2845–2847. [Google Scholar] [CrossRef]
- Tiong, K.K.; Amirtharaj, P.M.; Pollak, F.H.; Aspnes, D.E. Effects of As+ ion implantation on the Raman spectra of GaAs: ‘‘Spatial correlation’’ interpretation. Appl. Phys. Lett. 1984, 44, 122–124. [Google Scholar] [CrossRef]
- Farid, S.; Stroscio, M.A.; Dutta, M. Multiphonon Raman scattering and photoluminescence studies of CdS nanocrystals grown by thermal evaporation. Superlattices Microstruct. 2018, 115, 204–209. [Google Scholar] [CrossRef]
- Feng, Z.C. Micro-Raman scattering and microphotoluminescence of GaN thin films grown on sapphire by metal-organic chemical vapor deposition. Opt. Eng. 2002, 41, 2022–2031. [Google Scholar] [CrossRef]
- Liu, Y.B.; Yang, J.Y.; Xin, G.M.; Liu, L.H.; Csanyi, G.; Cao, B.Y. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga2O3. J. Chem. Phys. 2020, 153, 144501. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, Z.; Zhao, J.; Wang, H.; Hao, J.; Zhang, S.; Cheng, H.; Dong, B. Temperature-dependent Raman and photoluminescence of β-Ga2O3 doped with shallow donors and deep acceptors impurities. J. Alloys Compd. 2021, 881, 160665. [Google Scholar] [CrossRef]
- Jin, M.; Zheng, W.; Ding, Y.; Zhu, Y.; Wang, W.; Huang, F. Raman Tensor of van der Waals MoSe2. J. Phys. Chem. Lett. 2020, 11, 4311–4316. [Google Scholar] [CrossRef]
- Talochkin, A.B. Circularly polarized Raman scattering in silicon. J. Raman Spectrosc. 2019, 51, 201–206. [Google Scholar] [CrossRef]
- Shimasaki, M.; Nishihara, T.; Matsuda, K.; Endo, T.; Takaguchi, Y.; Liu, Z.; Miyata, Y.; Miyauchi, Y. Directional Exciton-Energy Transport in a Lateral Heteromonolayer of WSe2-MoSe2. ACS Nano 2022, 16, 8205–8212. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, Z.; Zhao, J.; Wang, H.; Hao, J.; Zhang, S.; Cheng, H.; Dong, B. Anisotropies of angle-resolved polarized Raman response identifying in low miller index β-Ga2O3 single crystal. Appl. Surf. Sci. 2022, 581, 152426. [Google Scholar] [CrossRef]
- Ling, X.; Huang, S.; Hasdeo, E.H.; Liang, L.; Parkin, W.M.; Tatsumi, Y.; Nugraha, A.R.T.; Puretzky, A.A.; Das, P.M.; Sumpter, B.G.; et al. Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. Nano Lett. 2016, 16, 2260–2267. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G. Raman spectroscopy of piezoelectrics. J. Appl. Phys. 2013, 113, 211301. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Lee, C.; Ryu, S. Polarized Raman Spectra and Complex Raman Tensors of Antiferromagnetic Semiconductor CrPS4. J. Phys. Chem. C 2021, 125, 2691–2698. [Google Scholar] [CrossRef]
S0 (At%) | S1 (At%) | S2 (At%) | S3 (At%) | S4 (At%) | |
---|---|---|---|---|---|
O K | 57.3 | 56.6 | 56.8 | 57.5 | 65.5 |
Al L | 0.1 | 2.6 | 4.7 | 7.2 | 8.9 |
Ga L | 42.4 | 40.8 | 38.5 | 35.3 | 25.5 |
Al/(Al + Ga) | 0.00 | 0.06 | 0.11 | 0.17 | 0.26 |
S0 | S1 | S2 | S3 | S4 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|a/c| | φac | R2 | |a/c| | φac | R2 | |a/c| | φac | R2 | |a/c| | φac | R2 | |a/c| | φac | R2 | |
0.922 | 0.724 | 0.873 | 0.919 | 0.632 | 0.947 | 0.915 | 0.557 | 0.620 | 0.824 | 0.526 | 0.849 | 0.732 | 0.575 | 0.915 | |
0.503 | 0.754 | 0.964 | 0.459 | 0.950 | 0.990 | 0.465 | 0.612 | 0.888 | 0.373 | 0.838 | 0.975 | 0.362 | 1.018 | 0.994 | |
14.740 | 0.129 | 0.996 | 14.463 | 0.185 | 0.998 | 13.256 | 0.454 | 0.990 | 12.903 | 0.327 | 0.993 | 11.995 | 0.128 | 0.988 |
S0 | S1 | S2 | S3 | S4 | |
---|---|---|---|---|---|
parallel polarization | 2.129 | 2.322 | 2.462 | 2.815 | 3.147 |
cross-polarization | 1.370 | 1.430 | 1.627 | 1.761 | 2.488 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wan, L.; Xia, C.; Sai, Q.; Talwar, D.N.; Feng, Z.C.; Liu, H.; Jiang, J.; Li, P. The Spatial Correlation and Anisotropy of β-(AlxGa1−x)2O3 Single Crystal. Materials 2023, 16, 4269. https://doi.org/10.3390/ma16124269
Li L, Wan L, Xia C, Sai Q, Talwar DN, Feng ZC, Liu H, Jiang J, Li P. The Spatial Correlation and Anisotropy of β-(AlxGa1−x)2O3 Single Crystal. Materials. 2023; 16(12):4269. https://doi.org/10.3390/ma16124269
Chicago/Turabian StyleLi, Liuyan, Lingyu Wan, Changtai Xia, Qinglin Sai, Devki N. Talwar, Zhe Chuan Feng, Haoyue Liu, Jiang Jiang, and Ping Li. 2023. "The Spatial Correlation and Anisotropy of β-(AlxGa1−x)2O3 Single Crystal" Materials 16, no. 12: 4269. https://doi.org/10.3390/ma16124269
APA StyleLi, L., Wan, L., Xia, C., Sai, Q., Talwar, D. N., Feng, Z. C., Liu, H., Jiang, J., & Li, P. (2023). The Spatial Correlation and Anisotropy of β-(AlxGa1−x)2O3 Single Crystal. Materials, 16(12), 4269. https://doi.org/10.3390/ma16124269