In-Composition Graded Quantum Barriers for Polarization Manipulation in InGaN-Based Yellow Light-Emitting Diodes
Abstract
1. Introduction
2. Device Structures and Parameters
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pimputkar, S.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. Prospects for LED lighting. Nat. Photon. 2009, 3, 180–182. [Google Scholar] [CrossRef]
- Hu, H.; Tang, B.; Wan, H.; Sun, H.; Zhou, S.; Dai, J.; Chen, C.; Liu, S.; Guo, L.J. Boosted ultraviolet electroluminescence of InGaN/AlGaN quantum structures grown on high-index contrast patterned sapphire with silica array. Nano Energy 2020, 69, 104427. [Google Scholar] [CrossRef]
- Wierer, J.J.; David, A.; Megens, M.M. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photon. 2009, 3, 163–169. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, X.; Yan, H.; Chen, Z.; Liu, Y.; Liu, S. Highly efficient GaN-based high-power flip-chip light-emitting diodes. Opt. Express 2019, 27, A669–A692. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, X.; Dong, J.; He, C.; Zhao, W.; Chen, Z.; Zhang, K.; Wang, X. Optimized performances in InGaN/GaN quantum-well membrane based vertical optoelectronics by the Piezo-phototronic effect. Nano Energy 2021, 89, 106454. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, S. III-Nitride LEDs: From UV to Green; Springer Nature: Singapore, 2022; pp. 13–89. [Google Scholar]
- Zhang, S.; Zhang, J.; Gao, J.; Wang, X.; Zheng, C.; Zhang, M.; Wu, X.; Xu, L.; Ding, J.; Quan, Z.; et al. Efficient emission of InGaN-based light-emitting diodes: Toward orange and red. Photon. Res. 2020, 8, 1671–1675. [Google Scholar] [CrossRef]
- Zhuang, Z.; Iida, D.; Ohkawa, K. Investigation of InGaN-based red/green micro-light-emitting diodes. Opt. Lett. 2021, 46, 1912–1915. [Google Scholar] [CrossRef]
- DenBaars, S.P.; Feezell, D.; Kelchner, K.; Pimputkar, S.; Pan, C.-C.; Yen, C.-C.; Tanaka, S.; Zhao, Y.; Pfaff, N.; Farrell, R.; et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Mater. 2013, 61, 945–951. [Google Scholar] [CrossRef]
- Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White light emitting diodes with super-high luminous efficacy. J. Phys. D Appl. Phys. 2010, 43, 354002. [Google Scholar] [CrossRef]
- Krames, M.R.; Ochiai-Holcomb, M.; Höfler, G.E.; Carter-Coman, C.; Chen, E.I.; Tan, I.-H.; Grillot, P.; Gardner, N.F.; Chui, H.C.; Huang, J.-W.; et al. High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency. Appl. Phys. Lett. 1999, 75, 2365–2367. [Google Scholar] [CrossRef]
- Zhao, X.; Wan, Z.; Gong, L.; Tao, G.; Zhou, S. Enhanced Optoelectronic Performance of Yellow Light-Emitting Diodes Grown on InGaN/GaN Pre-Well Structure. Nanomaterials 2021, 11, 3231. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Zhang, J.; Xu, L.; Ding, J.; Wang, G.; Wu, X.; Wang, X.; Mo, C.; Quan, Z.; Guo, X.; et al. Efficient InGaN-based yellow-light-emitting diodes. Photon. Res. 2019, 7, 144–148. [Google Scholar] [CrossRef]
- Usman, M.; Munsif, M.; Mushtaq, U.; Anwar, A.-R.; Muhammad, N. Green gap in GaN-based light-emitting diodes: In perspective. Crit. Rev. Solid State Mater. Sci. 2021, 46, 450–467. [Google Scholar] [CrossRef]
- Wang, T.; Bai, J.; Sakai, S.; Ho, J.K. Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes. Appl. Phys. Lett. 2001, 78, 2617–2619. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Liu, W.; Ju, Z.; Tan, S.T.; Ji, Y.; Kyaw, Z.; Zhang, X.; Wang, L.; Sun, X.; Demir, H.V. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers. Appl. Phys. Lett. 2014, 104, 243501. [Google Scholar] [CrossRef]
- Lv, Q.; Liu, J.; Mo, C.; Zhang, J.; Wu, X.; Wu, Q.; Jiang, F. Realization of Highly Efficient InGaN Green LEDs with Sandwich-like Multiple Quantum Well Structure: Role of Enhanced Interwell Carrier Transport. ACS Photonics 2019, 6, 130–138. [Google Scholar] [CrossRef]
- He, L.; Zhao, W.; Zhang, K.; He, C.; Wu, H.; Liu, N.; Song, W.; Chen, Z.; Li, S. Performance enhancement of AlGaN-based 365 nm ultraviolet light-emitting diodes with a band-engineering last quantum barrier. Opt. Lett. 2018, 43, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Schubert, E.F.; Kim, J.K. Efficiency droop in light-emitting diodes: Challenges and countermeasures. Laser Photonics Rev. 2013, 7, 408–421. [Google Scholar] [CrossRef]
- Usman, M.; Saba, K.; Han, D.-P.; Muhammad, N. Efficiency improvement of green light-emitting diodes by employing all-quaternary active region and electron-blocking layer. Superlattices Microstruct. 2018, 113, 585–591. [Google Scholar] [CrossRef]
- Chang, J.-Y.; Chang, Y.-A.; Wang, T.-H.; Chen, F.-M.; Liou, B.-T.; Kuo, Y.-K. Reduced efficiency droop in blue InGaN light-emitting diodes by thin AlGaN barriers. Opt. Lett. 2014, 39, 497–500. [Google Scholar] [CrossRef]
- Wang, C.H.; Chang, S.P.; Chang, W.T.; Li, J.C.; Lu, Y.S.; Li, Z.Y.; Yang, H.C.; Kuo, H.C.; Lu, T.-C.; Wang, S.C. Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells. Appl. Phys. Lett. 2010, 97, 181101. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, B.; Gong, L.; Bai, J.; Ping, J.; Zhou, S. Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes. Appl. Phys. Lett. 2021, 118, 182102. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Li, H.; Lu, T.-C. High efficiency InGaN/GaN light emitting diodes with asymmetric triangular multiple quantum wells. Appl. Phys. Lett. 2014, 104, 91111. [Google Scholar] [CrossRef]
- Masui, H.; Asamizu, H.; Melo, T.; Yamada, H.; Iso, K.; Cruz, S.C.; Nakamura, S.; Denbaars, S. Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar(1 0 0) and semipolar (1 1 2) orientations. J. Phys. D Appl. Phys. 2009, 42, 135106. [Google Scholar] [CrossRef]
- Masui, H.; Nakamura, S.; DenBaars, S.P.; Mishra, U.K. Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges. IEEE Trans. Electron. Devices 2010, 57, 88–100. [Google Scholar] [CrossRef]
- Yu, H.; Ren, Z.; Zhang, H.; Dai, J.; Chen, C.; Long, S.; Sun, H. Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier. Opt. Express 2019, 27, A1544–A1553. [Google Scholar] [CrossRef]
- Tao, G.; Zhao, X.; Zhou, S. Stacked GaN/AlN last quantum barrier for high-efficiency InGaN-based green light-emitting dodes. Opt. Lett. 2021, 46, 4593–4596. [Google Scholar] [CrossRef] [PubMed]
- SiLENSe—Software Tool for Light Emitting Diode (LED) Bandgap Engineering. Available online: http://www.semitech.us/products/SiLENSe/ (accessed on 1 August 2022).
- Ahmad, S.; Kumar, S.; Kaya, S.; Alvi, P.; Siddiqui, M. Improvement in efficiency of yellow Light Emitting Diode using InGaN barriers and modified electron injection layer. Optik 2019, 206, 163716. [Google Scholar] [CrossRef]
- Han, D.-P.; Shim, J.-I.; Shin, D.-S. Analysis of carrier recombination dynamics in InGaN-based light-emitting diodes by differential carrier lifetime measurement. Appl. Phys. Express 2017, 10, 52101. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Su, X.; Huang, S.; Tian, A.; Zhou, W.; Jiang, L.; Ikeda, M.; Yang, H. Effect of Graded-Indium-Content Superlattice on the Optical and Structural Properties of Yellow-Emitting InGaN/GaN Quantum Wells. Materials 2021, 14, 1877. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Ikeda, M.; Zhang, F.; Liu, J.; Zhang, S.; Tian, A.; Wen, P.; Li, D.; Zhang, L.; Yang, H. Steady-state recombination lifetimes in polar InGaN/GaN quantum wells by time-resolved photoluminescence. Jpn. J. Appl. Phys. 2019, 58, SCCB07. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Zhao, D.; Jiang, D.; Liu, Z.; Liu, W.; Liang, F.; Liu, S.; Xing, Y.; Wang, W.; et al. Influence of in doping in GaN barriers on luminescence properties of InGaN/GaN multiple quantum well LEDs. Superlattices Microstruct. 2018, 114, 32–36. [Google Scholar] [CrossRef]
Parameters | Symbol (Unit) | GaN | AlN | InN |
---|---|---|---|---|
Lattice constant | a0(Å) | 3.189 | 3.112 | 3.545 |
Bandgap energy | Eg(eV) | 3.435 | 6.138 | 0.711 |
Spin-orbit splitting | Δso(eV) | 0.017 | 0.019 | 0.005 |
Crystal-field splitting | Δcr(eV) | 0.010 | −0.169 | 0.040 |
Elastic constant | c33(GPa) | 398 | 373 | 224 |
c13(GPa) | 106 | 108 | 92 | |
Piezoelectric coefficient | d33(pm/V) | 3.1 | 5.4 | 7.6 |
d13(pm/V) | −1.6 | −2.1 | −3.5 | |
Spontaneous coefficient | Psp(C/m2) | −0.034 | −0.09 | −0.042 |
QW1 | QW2 | QW3 | QW4 | QW5 | QW6 | QW7 | QW8 | QW9 | |
---|---|---|---|---|---|---|---|---|---|
Sample A | 22.0% | 15.8% | 13.6% | 12.8% | 12.3% | 12.3% | 12.4% | 13.0% | 17.1% |
Sample B | 21.3% | 14.2% | 12.5% | 11.8% | 11.5% | 11.4% | 11.7% | 12.3% | 17.3% |
Sample C | 22.9% | 16.8% | 14.3% | 13.4% | 13.0% | 12.9% | 12.9% | 13.5% | 17.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, S.; Tao, G.; Gong, L.; Zhao, X.; Zhou, S. In-Composition Graded Quantum Barriers for Polarization Manipulation in InGaN-Based Yellow Light-Emitting Diodes. Materials 2022, 15, 8649. https://doi.org/10.3390/ma15238649
Cui S, Tao G, Gong L, Zhao X, Zhou S. In-Composition Graded Quantum Barriers for Polarization Manipulation in InGaN-Based Yellow Light-Emitting Diodes. Materials. 2022; 15(23):8649. https://doi.org/10.3390/ma15238649
Chicago/Turabian StyleCui, Siyuan, Guoyi Tao, Liyan Gong, Xiaoyu Zhao, and Shengjun Zhou. 2022. "In-Composition Graded Quantum Barriers for Polarization Manipulation in InGaN-Based Yellow Light-Emitting Diodes" Materials 15, no. 23: 8649. https://doi.org/10.3390/ma15238649
APA StyleCui, S., Tao, G., Gong, L., Zhao, X., & Zhou, S. (2022). In-Composition Graded Quantum Barriers for Polarization Manipulation in InGaN-Based Yellow Light-Emitting Diodes. Materials, 15(23), 8649. https://doi.org/10.3390/ma15238649