Flexible and Polarization Independent Miniaturized Double-Band/Broadband Tunable Metamaterial Terahertz Filter
Abstract
:1. Introduction
2. Proposed Metamaterial Design
3. Results and Discussions
3.1. Transmission Analysis
3.2. Physical Mechanism
3.3. Conducting Characteristic of Graphene
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Acronyms
T | Temperature |
E | Elementary charge |
Planck constant | |
Boltzmann constant | |
ω | Photon frequency |
EF | Fermi energy in graphene |
τ | Carrier relaxation time |
θ(ω) | Expression for inter-band condition |
vF | Fermi velocity |
u | Carrier mobility |
References
- Liang, L.; Jin, B.; Wu, J.; Huang, Y.; Ye, Z.; Huang, X.; Zhou, D.; Wang, G.; Jia, X.; Lu, H.; et al. A flexible wideband bandpass terahertz filter using multi-layer metamaterials. Appl. Phys. B 2013, 113, 285–290. [Google Scholar] [CrossRef]
- Elayan, H.; Amin, O.; Shubair, R.; Alouini, M. Terahertz Communication: The Opportunities of Wireless Technology Beyond 5G. In Proceedings of the International Conference on Advanced Communication Technologies and Networking (CommNet), Marrakech, Morocco, 2–4 April 2018. [Google Scholar]
- Nadeem, N.; Parveen, S.; Ismail, A. Terahertz Communications for 5G and Beyond. In Antenna Fundamentals for Legacy Mobile Applications and Beyond; Springer: Cham, Switzerland, 2018; p. 305. [Google Scholar]
- Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Corsi, C.; Sizov, F. Thz And Security Applications: Detectors, Sources And Associated Electronics For THz Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Jewariya, M.; Ragam, S.R.; Nagai, M.; Tanaka, K.; Abraham, E.; Yasui, T. Generation of high power terahertz pulse using tilted wavefront technique and its prospectus in non linear terahertz spectroscopy and three-dimensional computed tomography. In Proceedings of the 12th International Conference on Fiber Optics and Photonics, Kharagpur, India, 13–16 December 2014. [Google Scholar]
- Kaur, A.; Myers, J.C.; Ghazali, M.I.M.; Byford, J.; Chahal, P. Affordable Terahertz Components Using 3D Printing. In Proceedings of the IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 26–29 May 2015; p. 2071. [Google Scholar]
- Ri-Hui, X.; Jiu-Sheng, L. Double-Layer Frequency Selective Surface for Terahertz Bandpass Filter. J. Infrared Millim. Terahertz Waves 2018, 39, 1039–1046. [Google Scholar] [CrossRef]
- Wang, D.S.; Chen, B.J.; Chan, C.H. High-selectivity bandpass frequency-selective surface in terahertz band. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 284. [Google Scholar] [CrossRef]
- Gallant, A.J.; Kaliteevski, M.A.; Brand, S.; Wood, D.; Petty, M.; Abram, R.A.; Chamberlain, J.M. Terahertz frequency bandpass filters. J. Appl. Phys. 2007, 102, 023102. [Google Scholar] [CrossRef] [Green Version]
- O’Hara, J.F.; Singh, R.; Brener, I.; Smirnova, E.; Han, J.; Taylor, A.J.; Zhang, W. Thin-film sensing with planar terahertz metamaterials: Sensitivity and limitations. Opt. Express 2008, 16, 1786–1795. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craster, R.V.; Guenneau, S. Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking; Springer: Berlin, Germany, 2012; p. 166. [Google Scholar]
- Cai, W.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M. Optical cloaking with metamaterials. Nat. Photonics 2007, 1, 224–227. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Koshelev, K.; Zhang, F.; Lin, H.; Lin, S.; Wu, J.; Jia, B.; Kivshar, Y. Bound States in the Continuum in Anisotropic Plasmonic Metasurfaces. Nano Lett. 2020, 20, 6351–6356. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.; Alam, M.; Zhou, Y.; Liu, C.; Reshef, O.; Manukyan, K.; Voegtle, M.; Pennathur, A.; Tseng, C.; Su, X.; et al. Adiabatic Frequency Conversion Using a Time-Varying Epsilon-Near-Zero Metasurface. Nano Lett. 2021, 21, 5907–5913. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ding, Y. Terahertz broadband-stop filters. IEEE J. Sel. Top. Quant. 2013, 19, 8500705. [Google Scholar]
- Chiang, Y.-J.; Yang, C.-S.; Yang, Y.-H.; Pan, C.-L.; Yen, T.-J. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Appl. Phys. Lett. 2011, 99, 191909. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Qi, L.; Liu, Z. Terahertz Broadband Filter and Electromagnetically Induced Transparency Structure with Complementary Metasurface. Results Phys. 2020, 16, 102887. [Google Scholar] [CrossRef]
- Ao, T.; Xu, X.; Gu, Y.; Chen, Z.; Jiang, Y.; Li, X.; Lian, Y.; Wang, F.; He, Q.; Zhou, J. Terahertz band-pass filters based on fishnet metamaterials fabricated on free-standing SiNx membrane. Opt. Commun. 2017, 405, 22–28. [Google Scholar] [CrossRef]
- Yan, D.; Meng, M.; Li, J.; Li, X. Graphene-Assisted Narrow Bandwidth Dual-Band Tunable Terahertz Metamaterial Absorber. Front. Phys. 2020, 8, 306. [Google Scholar] [CrossRef]
- Wang, B.-X.; He, Y.; Loua, P.; Xing, W. Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv. 2020, 2, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cen, C.; Liang, C.; Yi, Z.; Chen, X.; Li, M.; Zhou, Z.; Tang, Y.; Yi, Y.; Zhang, G. Dual-band switchable terahertz metamaterial absorber based on metal nanostructure. Results Phys. 2019, 14, 102422. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, Y.; Hu, F.; Jiang, M.; Zhang, L. A dynamically adjustable broadband terahertz absorber based on a vanadium dioxide hybrid metamaterial. Results Phys. 2020, 19, 103384. [Google Scholar] [CrossRef]
- Wang, T.; Qu, L.; Qu, L.; Zhang, Y.; Zhang, H.; Cao, M. Tunable broadband terahertz metamaterial absorber using multi-layer black phosphorus and vanadium dioxide. J. Phys. D Appl. Phys. 2020, 53, 145105. [Google Scholar] [CrossRef]
- Li, W.; Cheng, Y. Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure. Opt. Commun. 2020, 462, 125265. [Google Scholar] [CrossRef]
- Du, C.; Zhou, D.; Guo, H.-H.; Pang, Y.-Q.; Shi, H.-Y.; Liu, W.-F.; Su, J.-Z.; Singh, C.; Trukhanov, S.; Trukhanov, A.; et al. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating. Nanoscale 2020, 12, 9769–9775. [Google Scholar] [CrossRef]
- Mohammed, H.; Semih, C.; Mona, J. Reconfigurable metamaterials for terahertz wave manipulation. Rep. Prog. Phys. 2017, 80, 094501. [Google Scholar]
- Karl, N.; Reichel, K.; Chen, H.-T.; Taylor, A.J.; Brener, I.; Benz, A.; Reno, J.L.; Mendis, R.; Mittleman, D.M. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range. Appl. Phys. Lett. 2014, 104, 091115. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Shah, C.M.; Withayachumnankul, W.; Ung, B.S.Y.; Mitchell, A. Mechanically tunable terahertz metamaterials. Appl. Phys. Lett. 2013, 102, 121101. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Charipar, N.; Breckenfeld, E.; Rosenberg, A.; Piqué, A. Active terahertz metamaterials based on the phase transition of VO2 thin films. Thin Solid Films 2015, 596, 45. [Google Scholar] [CrossRef] [Green Version]
- Padilla, W.; Cich, M.; Azad, A.; Averitt, R.; Taylor, A.; Chen, H.-T. A metamaterial solid-state terahertz phase modulator. Nat. Photonics 2009, 3, 148. [Google Scholar]
- Sahin, S.; Nahar, N.K.; Sertel, K. Dielectric Properties of Low-Loss Polymers for mmW and THz Applications. J. Infrared Millim. Terahertz Waves 2019, 40, 557–573. [Google Scholar] [CrossRef]
- Miao, Z.; Wu, Q.; Li, X.; He, Q.; Ding, K.; An, Z.; Zhang, Y.; Zhou, L. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X 2015, 5, 041027. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, S.; Islam, S.S.; Mat, K.; Chowdhury, M.E.H.; Rmili, H.; Islam, M.T. Design and parametric analysis of a wide-angle polarization-insensitive metamaterial absorber with a star shape resonator for optical wavelength applications. Results Phys. 2020, 18, 103259. [Google Scholar] [CrossRef]
- Kirley, M.; Booske, J. Terahertz Conductivity of Copper Surfaces. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 1012–1020. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Zhang, L.; We, X. Dynamically tunable plasmon-induced transparency based on radiative–radiative-coupling in a terahertz metal–graphene metamaterial. Crystals 2019, 9, 146. [Google Scholar] [CrossRef]
Ref. | Dual-band | Broadband | Bandwidth | Reconfigurable | Polarization Insensitive | Complexity |
---|---|---|---|---|---|---|
20 | Yes | No | 26.4 GHz (f1), 23.5 GHz (f2) | Yes | Yes | No |
21 | Yes | Yes | 257 GHz (f1), 8.3 GHz (f2) | No | Yes | No |
22 | Yes | Yes | 500 GHz | No | Yes | No |
23 | No | Yes | ~1 THz | Yes | Yes | No |
24 | No | Yes | 2.9 THz | Yes | No | Yes, Multilayer |
25 | Yes | No | 11 GHz (f1), 58 GHz (f2) | Yes | Yes | Yes, STO * structure |
26 | No | Yes | 8 THz | No | - | Yes, Multilayer ERR * |
This work | Yes | Yes | 350 GHz (f1), 700 GHz (f2) | Yes | Yes | Single layer patch |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esakkimuthu, M.; Jothinayagam, I.; Arumugam, K.; Pravin, S.C.; Jewariya, M. Flexible and Polarization Independent Miniaturized Double-Band/Broadband Tunable Metamaterial Terahertz Filter. Materials 2022, 15, 8174. https://doi.org/10.3390/ma15228174
Esakkimuthu M, Jothinayagam I, Arumugam K, Pravin SC, Jewariya M. Flexible and Polarization Independent Miniaturized Double-Band/Broadband Tunable Metamaterial Terahertz Filter. Materials. 2022; 15(22):8174. https://doi.org/10.3390/ma15228174
Chicago/Turabian StyleEsakkimuthu, Manikandan, Inbarani Jothinayagam, Karthigeyan Arumugam, Sheena Christabel Pravin, and Mukesh Jewariya. 2022. "Flexible and Polarization Independent Miniaturized Double-Band/Broadband Tunable Metamaterial Terahertz Filter" Materials 15, no. 22: 8174. https://doi.org/10.3390/ma15228174
APA StyleEsakkimuthu, M., Jothinayagam, I., Arumugam, K., Pravin, S. C., & Jewariya, M. (2022). Flexible and Polarization Independent Miniaturized Double-Band/Broadband Tunable Metamaterial Terahertz Filter. Materials, 15(22), 8174. https://doi.org/10.3390/ma15228174