Analysis of Active and Passive Deformation of Expanded Polystyrene Foam under Short-Term Compression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. EPS Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aksit, M.; Zhao, C.; Klose, B.; Kreger, K.; Schmidt, H.W.; Alstädt, V. Extruded polystyrene foams with enhanced insulation and mechanical properties by a benzene-trisamide-based additive. Polymers 2019, 11, 268. [Google Scholar] [CrossRef] [Green Version]
- Gil-Jasso, N.; Segura-González, M.A.; Soriano-Giles, G.; Neri-Hipolito, J.; López, N.; Mas-Hernández, E.; Barrera-Díaz, C.E.; Varela-Guerrero, V.; Ballesteros-Rivas, M.F. Dissolution and recovery of waste expanded polystyrene using alternative essential oil. Fuel 2019, 239, 611–616. [Google Scholar] [CrossRef]
- Marvi-Mashhadi, M.; Lopes, C.S.; Lorka, J.L. Modelling of the mechanical behavior of polyurethane foams by means of micromechanical characterization and computational homogenization. Int. J. Solids Struct. 2018, 146, 154–166. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, W.; Qu, G.; Lin, X.; Han, D.; Yan, X.; Zhang, H. Liquefaction of peanut shells with cation exchange resin and sulfuric acid as dual catalyst for the subsequent synthesis of rigid polyurethane foam. Polymers 2019, 11, 993. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Yu, Y.; Li, K.; Wu, X. SHPB experiment research on dynamic property of expanded polystyrene foam. Polym. Test. 2019, 69, 431–436. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids, Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 2001; p. 532. [Google Scholar]
- Arencón, D.; Antunes, M.; Martínez, A.B.; Velasco, J.I. Study of the fracture behavior of flexible polypropylene foams using essential work of fracture (EWF). Polym. Test. 2012, 31, 217–225. [Google Scholar] [CrossRef]
- Abina, A.; Puc, U.; Jeglič, A.; Zidanšek, A. Structural analysis of insulating polymer foams with terahertz spectroscopy and imaging. Polym. Test. 2013, 32, 739–747. [Google Scholar] [CrossRef]
- Członka, S.; Sienkiewicz, N.; Kairytė, A.; Vaitkus, S. Colored polyurethane foams with enhanced mechanical and thermal properties. Polym. Test. 2019, 78, 105986. [Google Scholar] [CrossRef]
- Elsing, J.; Stefanov, T.; Gilshrist, M.D.; Stubenrauch, C. Monodisperse polystyrene foam via polymerization of foamed emulsion: Structure and mechanical properties. Phys. Chem. Chem. Phys. 2017, 19, 5477–5485. [Google Scholar] [CrossRef]
- Członka, S.; Sienkiewicz, N.; Strąkoeska, A.; Strzelec, K. Keratin feathers as a filler for rigid polyurethane foams on the basis of soybean oil polyol. Polym. Test. 2018, 72, 32–45. [Google Scholar] [CrossRef]
- Bai, T.; Dong, B.; Xiao, M.; Liu, H.; Wang, N.; Wang, Y.; Wang, C.; Liu, C.; Cao, W.; Zhang, J.; et al. Polystyrene foam with high cell density and small cell size by compression-injection molding and core back foaming technique: Evolution of cells in cavity. Macromol. Mater. Eng. 2018, 303, 1800110. [Google Scholar] [CrossRef]
- Kairytė, A.; Vaitkus, S.; Kremensas, A.; Pundienė, I.; Członka, S.; Strzelec, K. Moisture-mechanical performance inprovementof thermal insulating polyurethane using paper production waste particles grafted with different coupling agents. Constr. Build. Mater. 2019, 208, 525–534. [Google Scholar] [CrossRef]
- Marsavina, L.; Sadowski, T. Dynamic fracture toughness of polyurethane foam. Polym. Test. 2008, 27, 941–944. [Google Scholar] [CrossRef]
- Vilau, C.; Dudescu, M.C. Investigation of mechanical behaviour of expanded polystyrene under compressive and bending loadings. Mat. Plast. 2020, 57, 199–207. [Google Scholar] [CrossRef]
- Liu, Q.; Subhash, G.; Gao, X.L. A parametric study on crushability of open-cell structural polymeric foams. J. Porous Mater. 2005, 12, 233–248. [Google Scholar] [CrossRef]
- Ozturk, U.E.; Anlas, G. Multiple compressive loading and unloading behavior of polymeric foams. J. Polym. Eng. 2007, 27, 607–619. [Google Scholar] [CrossRef]
- Ozturk, U.E.; Anlas, G. Energy absorption calculations in multiple compressive loading of polymeric foams. Mater. Des. 2009, 30, 15–22. [Google Scholar] [CrossRef]
- Ozturk, U.E.; Anlas, G. Finite element analysis of expanded polystyrene foam under multiple compressive loading and unloading. Mater. Des. 2011, 32, 773–780. [Google Scholar] [CrossRef]
- Stoia, D.I.; Linul, E.; Marsavina, L. Mixed-mode I/II fracture properties of selectively laser sintered polyamide. Theor. Appl. Fract. Mech. 2022, 121, 103527. [Google Scholar] [CrossRef]
- Khristenko, U.; Constantinescu, A.; Le Tallec, P.; Wohlmuth, B. Statistically equivalent surrogate material models: Impact of random imperfections on the elasto-plastic response. Comput. Methods Appl. Mech. Engrg. 2022, article in press. [Google Scholar] [CrossRef]
- Thompsett, D.J.; Walker, A.; Radley, R.J.; Grieveson, B.M. Design and construction of expanded polystyrene embankments. Practical design methods as used in the United Kingdom. Constr. Build. Mater. 1995, 9, 403–411. [Google Scholar] [CrossRef]
- Song, B.; Chen, W.W.; Dou, S.; Winfree, N.A.; Kang, J.H. Strain-rate effects on elastic and early cell-collapse responses of a polystyrene foam. Int. J. Impact Eng. 2005, 31, 509–521. [Google Scholar] [CrossRef]
- Gnip, I.; Keršulis, V.; Vaitkus, S.; Vėjelis, S. Assesment of strength under compression of expanded polystyrene (EPS) slabs. Mater. Sci. (Medžiagotyra) 2004, 10, 326–329. [Google Scholar]
- Landro, L.D.; Sala, G.; Olivieri, D. Deformation mechanisms and energy absorption of polystyrene foams for protective helmets. Polym. Test. 2002, 21, 217–228. [Google Scholar] [CrossRef]
- Mills, N.J. Micromechanics of Polymeric Foams. In Proceedings of the 3rd Nordic meeting on Materials and Mechanics, Aalborg, Denmark, 11–13 May 2008. [Google Scholar]
- Zhang, X.F.; Andrieux, F.; Sun, D.Z. Pseudo-elastic description of polymeric foams at finite deformation with stress softening and residual strain effects. Mater. Des. 2011, 32, 877–884. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, X.; Wu, S.; Zhang, H. Indentation of expanded polystyrene foams with a ball. Int. J. Mech. Sci. 2019, 162-162, 105030. [Google Scholar] [CrossRef]
- EN 13163—Thermal Insulation Products for Buildings—Factory Made Expanded Polystyrene (EPS) Products—Specification; European Standardization Committee: Brussels, Belgium, 2012.
- EN 12085—Thermal Insulating Products for Building Applications—Determination of Linear Dimensions of Test Specimens; European Standardization Committee: Brussels, Belgium, 2013.
- EN 1602—Thermal Insulating Products for Building Applications—Determination of the Apparent Density; European Standardization Committee: Brussels, Belgium, 2013.
- EN 826—Thermal Insulating Products for Building Applications—Determination of Compression Behaviour; European Standardization Committee: Brussels, Belgium, 2013.
- Electronic Statistics Textbook, StatSoft. Available online: http://www.statsoft.com/textbook/ (accessed on 15 September 2022).
- Sokal, R.R.; Rohlf, F.J. The Principles and Practice of Statistics in Biological Research. In Biometry, 3rd ed.; W. H. Freeman and Company: New York, NY, USA, 1998; p. 880. [Google Scholar]
- Chetyrkin, Y.M. Statistical Prediction Methods; Finansy i Statistika Publ.: Moscow, Russia, 1977; p. 200. [Google Scholar]
- Sachs, L. Statistical Evaluation; Springer: Berlin, Germany, 1972; p. 548. [Google Scholar]
- Vaitkus, S. Experimental Investigations of Strength and Deformation Properties of Expanded Polystyrene Under Short- and Long-Term Compressive Loading; Technika: Vilnius, Lithuania, 2007; p. 25. [Google Scholar]
- Gnip, I.J.; Kersulis, V.; Vaitkus, S. Predicting the deformability of expanded polystyrene under short—term compression. Mech. Compos. Mater. 2005, 41, 157–162. [Google Scholar]
- Kilar, V.; Koren, D.; Bokan-Bosiljkov, V. Evaluation of the performance of extruded polystyrene boards—implications for their application in earthquake engineering. Polym. Test. 2014, 40, 234–244. [Google Scholar] [CrossRef]
- Imad, A.; Ouâkka, A.; Dang Van, K.; Mesmacque, G. Analysis of the viscoelastoplastic behavior of expanded polystyrene under compressive loading: Experiments and modeling. Strength Mater. 2001, 33, 140–149. [Google Scholar] [CrossRef]
- Ling, C.; Ivens, J.; Cardiff, P.; Gilchrist, M.D. Deformation response of EPS foam under combined compression-shear loading. Part I: Experimental design and quasi-static tests. Int. J. Mech. Sci. 2018, 144, 480–489. [Google Scholar] [CrossRef]
- Gómez-Rojo, R.; Alameda, L.; Rodríguez, Á.; Calderón, V.; Gutiérrez-González, S. Characterization of polyurethane foam waste for reuse in eco-efficient building materials. Polymers 2019, 11, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smorygo, O.; Gokhale, A.A.; Vazhnova, A.; Stefan, A. Ultra-low density epoxy/polystyrene foam composite with high specific strength and pseudo-plastic behavior. Compos. Commun. 2019, 15, 64–67. [Google Scholar] [CrossRef]
- Ehinger, D.; Weise, J.; Baumeister, J.; Funk, A.; Waske, A.; Krüger, L.; Martin, U. Microstructure and deformation response of TRIP-steel syntatic foams to quasi-static and dynamic compressive loads. Materials 2018, 11, 656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chernous, D.A.; Shil‘ko, S.V. Large elastic strains of plastic foams. Mech. Compos. Mater. 2005, 41, 415–424. [Google Scholar] [CrossRef]
- Xi, H.; Liu, Y.; Tang, L.; Liu, Z.; Mu, J.; Yang, B. Constitutive model of aluminum foam with temperature effect under quasi-static compression. J. Harbin Eng. Univ. 2013, 34, 1–6. [Google Scholar]
- Alaneme, K.K.; Ramamurty, U.; Garcia-Moreno, F. A non-linear regression model of the deformation behaviour of aluminium foams subjected to quasi-static compression. NSE Tech. Trans. 2013, 47, 1–11. [Google Scholar]
Test Series No. | Initial Characteristics of EPS Specimens before Testing | Test Conditions | |||
---|---|---|---|---|---|
Mean Apparent Density ρ, kg/m3 | Mean Compressive Stress σi, kPa | Mean Modulus of Elasticity E, MPa | Strain under Compressive Loading εi, % | Time after Unloading τ, Days | |
1 | 16.3 ± 0.9 1 | 86.2 ± 7.3 1 | 3.26 ± 0.4 1 | 15 | 647 |
26.8 ± 0.6 | 171 ± 4.9 | 7.35 ± 0.2 | |||
2 | 16.1 ± 0.6 | 84.6 ± 4.9 | 3.18 ± 0.2 | 20 | 288 |
28.0 ± 2.3 | 181 ± 19 | 7.82 ± 0.9 | |||
3 | 16.5 ± 1.1 | 87.8 ± 8.9 | 3.34 ± 0.4 | 25 | 645 |
28.7 ± 1.6 | 187 ± 13 | 8.09 ± 0.6 | |||
4 | 16.2 ± 0.4 | 85.4 ± 3.2 | 3.22 ± 0.2 | 30 | 435 |
29.7 ± 0.7 | 195 ± 5.7 | 8.48 ± 0.3 | |||
5 | 17.4 ± 0.4 | 95.1 ± 3.2 | 3.69 ± 0.2 | 35 | 287 |
29.4 ± 0.9 | 192 ± 7.3 | 8.37 ± 0.4 | |||
6 | 16.5 ± 0.3 | 87.8 ± 2.4 | 3.34 ± 0.1 | 40 | 422 |
28.4 ± 0.6 | 184 ± 4.9 | 7.98 ± 0.2 | |||
7 | 15.2 ± 1.0 | 77.3 ± 8.1 | 2.83 ± 0.4 | 45 | 707 |
27.9 ± 2.1 | 180 ± 17 | 7.78 ± 0.8 | |||
8 | 16.8 ± 0.7 | 90.3 ± 5.7 | 3.45 ± 0.3 | 50 | 588 |
27.6 ± 0.8 | 178 ± 6.5 | 7.66 ± 0.3 | |||
9 | 15.4 ± 0.9 | 78.9 ± 7.3 | 2.91 ± 0.4 | 55 | 205 |
30.2 ± 1.3 | 199 ± 11 | 8.68 ± 0.5 | |||
10 | 16.3 ± 0.7 | 86.2 ± 5.7 | 3.26 ± 0.3 | 60 | 863 |
28.6 ± 1.1 | 186 ± 8.9 | 8.05 ± 0.4 | |||
11 | 20.4 ± 0.9 | 119 ± 7.3 | 4.86 ± 0.4 | 65 | 244 |
30.9 ± 3.6 | 204 ± 29 | 8.95 ± 1.4 |
Test Series No. | Strain under Compressive Loading, % | Number of Tested Specimens | Parameters of Equation (2) | Coeff. of Determination | Standard Deviation | Possible Error , % | ||
---|---|---|---|---|---|---|---|---|
1 | 15 | 48 | 0.0233 | 2.1585 | −0.0605 | 0.835 | 0.490 | 0.637 |
2 | 20 | 96 | 0.0422 | 1.8928 | −0.0370 | 0.821 | 0.932 | 1.204 |
3 | 25 | 109 | 0.0241 | 2.2900 | −0.0522 | 0.866 | 1.145 | 1.477 |
4 | 30 | 316 | 0.0721 | 1.9927 | −0.0502 | 0.811 | 1.537 | 1.974 |
5 | 35 | 375 | 0.1343 | 1.7680 | −0.0367 | 0.910 | 1.251 | 1.606 |
6 | 40 | 570 | 0.3232 | 1.5000 | −0.0316 | 0.871 | 1.523 | 1.953 |
7 | 45 | 31 | 0.2240 | 1.7547 | −0.0423 | 0.970 | 0.836 | 1.098 |
8 | 50 | 110 | 0.5428 | 1.4246 | −0.0292 | 0.744 | 2.851 | 3.676 |
9 | 55 | 96 | 0.5921 | 1.2666 | −0.0146 | 0.914 | 2.162 | 2.791 |
10 | 60 | 125 | 0.8236 | 1.2736 | −0.0217 | 0.833 | 2.905 | 3.745 |
11 | 65 | 20 | 0.0617 | 2.4401 | −0.0605 | 0.986 | 1.286 | 1.714 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaitkus, S.; Vėjelis, S.; Šeputytė-Jucikė, J.; Członka, S.; Strzelec, K.; Kairytė, A. Analysis of Active and Passive Deformation of Expanded Polystyrene Foam under Short-Term Compression. Materials 2022, 15, 7548. https://doi.org/10.3390/ma15217548
Vaitkus S, Vėjelis S, Šeputytė-Jucikė J, Członka S, Strzelec K, Kairytė A. Analysis of Active and Passive Deformation of Expanded Polystyrene Foam under Short-Term Compression. Materials. 2022; 15(21):7548. https://doi.org/10.3390/ma15217548
Chicago/Turabian StyleVaitkus, Saulius, Sigitas Vėjelis, Jurga Šeputytė-Jucikė, Sylwia Członka, Krzystof Strzelec, and Agnė Kairytė. 2022. "Analysis of Active and Passive Deformation of Expanded Polystyrene Foam under Short-Term Compression" Materials 15, no. 21: 7548. https://doi.org/10.3390/ma15217548
APA StyleVaitkus, S., Vėjelis, S., Šeputytė-Jucikė, J., Członka, S., Strzelec, K., & Kairytė, A. (2022). Analysis of Active and Passive Deformation of Expanded Polystyrene Foam under Short-Term Compression. Materials, 15(21), 7548. https://doi.org/10.3390/ma15217548