Approach to Estimate the Phase Formation and the Mechanical Properties of Alloys Processed by Laser Powder Bed Fusion via Casting
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cahn, R.W.; Haasen, P.; Kramer, E.J. Materials Science and Technology: A Comprehensive Treatment; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; ISBN 978-3-527-31395-2/3-527-31395-8. [Google Scholar]
- Bhadeshia, H.; Honeycombe, R. Steels: Microstructure and Properties, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2017; ISBN 9780081002704. [Google Scholar]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- Li, N.; Huang, S.; Zhang, G.; Qin, R.; Liu, W.; Xiong, H.; Shi, G.; Blackburn, J. Progress in additive manufacturing on new materials: A review. J. Mater. Sci. Technol. 2018, 35, 242–269. [Google Scholar] [CrossRef]
- Prashanth, K.G.; Scudino, S.; Klauss, H.J.; Surreddi, K.B.; Löber, L.; Wang, Z.; Chaubey, A.K.; Kühn, U.; Eckert, J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng. A 2014, 590, 153–160. [Google Scholar] [CrossRef]
- Li, R.; Shi, Y.; Wang, Z.; Wang, L.; Liu, J.; Jiang, W. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Appl. Surf. Sci. 2010, 256, 4350–4356. [Google Scholar] [CrossRef]
- Peters, M.; Leyens, C. Titan und Titanlegierungen; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002; ISBN 978-3-527-30539-1. [Google Scholar]
- Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E.A. Steels in additive manufacturing: A review of their microstructure and properties. Mater. Sci. Eng. A 2020, 772, 138633. [Google Scholar] [CrossRef]
- SLM Solutions Group. Available online: https://www.slm-solutions.com/products-and-solutions/powders/ (accessed on 6 October 2022).
- Aversa, A.; Marchese, G.; Saboori, A.; Bassini, E.; Manfredi, D.; Biamino, S.; Ugues, D.; Fino, P.; Lombardi, M. New Aluminum Alloys Specifically Designed for Laser Powder Bed Fusion: A Review. Materials 2019, 12, 1007. [Google Scholar] [CrossRef] [Green Version]
- Pauly, S.; Wang, P.; Kühn, U.; Kosiba, K. Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu. Addit. Manuf. 2018, 22, 753–757. [Google Scholar] [CrossRef]
- Chao, Q.; Cruz, V.; Thomas, S.; Birbilis, N.; Collins, P.; Taylor, A.; Hodgson, P.D.; Fabijanic, D. On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel. Scr. Mater. 2017, 141, 94–98. [Google Scholar] [CrossRef]
- Heiden, M.J.; Deibler, L.A.; Rodelas, J.M.; Koepke, J.R.; Tung, D.J.; Saiz, D.J.; Jared, B.H. Evolution of 316L stainless steel feedstock due to laser powder bed fusion process. Addit. Manuf. 2018, 25, 84–103. [Google Scholar] [CrossRef]
- Vukkum, V.; Gupta, R. Review on corrosion performance of laser powder-bed fusion printed 316L stainless steel: Effect of processing parameters, manufacturing defects, post-processing, feedstock, and microstructure. Mater. Des. 2022, 221, 110874. [Google Scholar] [CrossRef]
- Song, B.; Zhao, X.; Li, S.; Han, C.; Wei, Q.; Wen, S.; Liu, J.; Shi, Y. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review. Front. Mech. Eng. 2015, 10, 111–125. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Z.; Li, D.; Kollo, L.; Luo, Z.; Zhang, W.; Prashanth, K.G. Cu-Ni-Sn alloy fabricated by melt spinning and selective laser melting: A comparative study on the microstructure and formation kinetics. J. Mater. Res. Technol. 2020, 9, 13097–13105. [Google Scholar] [CrossRef]
- Marola, S.; Manfredi, D.; Fiore, G.; Poletti, M.G.; Lombardi, M.; Fino, P.; Battezzati, L. A comparison of Selective Laser Melting with bulk rapid solidification of AlSi10Mg alloy. J. Alloys Compd. 2018, 742, 271–279. [Google Scholar] [CrossRef]
- Srivastava, R.M.; Eckert, J.; Löser, W.; Dhindaw, B.K.; Schultz, L. Cooling Rate Evaluation for Bulk Amorphous Alloys from Eutectic Microstructures in Casting Processes. Mater. Trans. 2002, 43, 1670–1675. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.; Deng, K.; Xu, Z.; Han, K.; Zheng, H. Microstructural Characterization and Mechanical Property of Al-Li Plate Produced by Centrifugal Casting Method. Metals 2021, 11, 966. [Google Scholar] [CrossRef]
- Kühn, U.; Mattern, N.; Gemming, T.; Siegel, U.; Werniewicz, K.; Eckert, J. Superior mechanical properties of FeCrMoVC. Appl. Phys. Lett. 2007, 90, 261901. [Google Scholar] [CrossRef]
- Hufenbach, J.; Giebeler, L.; Hoffmann, M.; Kohlar, S.; Kühn, U.; Gemming, T.; Oswald, S.; Eigenmann, B.; Eckert, J. Effect of short-term tempering on microstructure and mechanical properties of high-strength FeCrMoVC. Acta Mater. 2012, 60, 4468–4476. [Google Scholar] [CrossRef]
- Sander, J.; Hufenbach, J.; Giebeler, L.; Bleckmann, M.; Eckert, J.; Kühn, U. Microstructure, mechanical behavior, and wear properties of FeCrMoVC steel prepared by selective laser melting and casting. Scr. Mater. 2017, 126, 41–44. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Roisnel, T.; Rodríquez-Carvajal, J. WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis. Mater. Sci. Forum 2001, 378–381, 118–123. [Google Scholar] [CrossRef]
- Sander, J.; Hufenbach, J.; Giebeler, L.; Wendrock, H.; Kühn, U.; Eckert, J. Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting. Mater. Des. 2016, 89, 335–341. [Google Scholar] [CrossRef]
- Hwang, K.C.; Lee, S.; Lee, H.C. Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls: Part II. Fracture behavior. Mater. Sci. Eng. A 1998, 254, 296–304. [Google Scholar] [CrossRef]
- Luan, Y.; Song, N.; Bai, Y.; Kang, X.; Li, D. Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls. J. Mater. Process. Technol. 2010, 210, 536–541. [Google Scholar] [CrossRef]
- Ridley, N.; Stuart, H. Partial Molar Volumes from High-Temperature Lattice Parameters of Iron–Carbon Austenites. Met. Sci. J. 1970, 4, 219–222. [Google Scholar] [CrossRef]
- Kohlhaas, R.; Duenner, P.; Schmitz-Pranghe, N. Über die Temperaturabhängigkeit der Gitterparameter von Eisen Kobalt und Nickel im Bereich hoher Temperaturen. Z. Fuer Angew. Phys. 1967, 23, 245. [Google Scholar]
- Cahn, J.W.; Hillig, W.B.; Sears, G.W. The molecular mechanism of solidification. Acta Metall. 1964, 12, 1421–1439. [Google Scholar] [CrossRef]
- Pound, G.M.; Mer, V.K.L. Kinetics of crystalline nucleus formation in supercooled liquid tin. J. Am. Chem. Soc. 1952, 74, 2323–2332. [Google Scholar] [CrossRef]
- Kelton, K.F.; Greer, A.L. Nucleation in condensed matter: Applications in materials and biology. In Pergamon Materials Series; Pergamon: Oxford, UK, 2010; Volume 15, p. iii. [Google Scholar]
- Kosiba, K.; Scudino, S.; Kobold, R.; Kühn, U.; Greer, A.; Eckert, J.; Pauly, S. Transient nucleation and microstructural design in flash-annealed bulk metallic glasses. Acta Mater. 2017, 127, 416–425. [Google Scholar] [CrossRef]
- Celada-Casero, C.; Sietsma, J.; Santofimia, M.J. The role of the austenite grain size in the martensitic transformation in low carbon steels. Mater. Des. 2019, 167, 107625. [Google Scholar] [CrossRef]
- Freeman, F.S.; Sharp, J.; Xi, J.; Todd, I. Influence of solidification cell structure on the martensitic transformation in additively manufactured steels. Addit. Manuf. 2019, 30, 100917. [Google Scholar] [CrossRef]
- Yang, H.-S.; Bhadeshia, H. Austenite grain size and the martensite-start temperature. Scr. Mater. 2009, 60, 493–495. [Google Scholar] [CrossRef]
- Takaki, S.; Fukunaga, K.; Syarif, J.; Tsuchiyama, T. Effect of Grain Refinement on Thermal Stability of Metastable Austenitic Steel. Mater. Trans. 2004, 45, 2245–2251. [Google Scholar] [CrossRef] [Green Version]
- Nichol, T.J.; Judd, G.; Ansell, G.S. The relationship between austenite strength and the transformation to martensite in Fe-10 pct Ni-0.6 pct C alloys. Met. Mater. Trans. A 1977, 8, 1877–1883. [Google Scholar] [CrossRef]
- Pflüger, J.; Fink, J.; Weber, W.; Bohnen, K.P.; Crecelius, G. Dielectric properties of TiCx, TiNx, VCx, and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy. Phys. Rev. B 1984, 30, 1155–1163. [Google Scholar] [CrossRef]
- Page, K.; Li, J.; Savinelli, R.; Szumila, H.N.; Zhang, J.; Stalick, J.K.; Proffen, T.; Scott, S.L.; Seshadri, R. Reciprocal-space and real-space neutron investigation of nanostructured Mo2C and WC. Solid State Sci. 2008, 10, 1499–1510. [Google Scholar] [CrossRef]
- Sander, J.; Hufenbach, J.; Bleckmann, M.; Giebeler, L.; Wendrock, H.; Oswald, S.; Gemming, T.; Eckert, J.; Kühn, U. Selective laser melting of ultra-high-strength TRIP steel: Processing, microstructure, and properties. J. Mater. Sci. 2016, 52, 4944–4956. [Google Scholar] [CrossRef]
- Ali, H.; Ghadbeigi, H.; Mumtaz, K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A 2018, 712, 175–187. [Google Scholar] [CrossRef]
- Kühn, U.; Romberg, J.; Mattern, N.; Wendrock, H.; Eckert, J. Transformation-induced plasticity in Fe-Cr-V-C. J. Mater. Res. 2010, 25, 368–374. [Google Scholar] [CrossRef]
- Kochta, F.; Kühn, U.; Henschel, S.; Giebeler, L.; Gemming, T.; Neufeld, K.; Leyens, C.; Krüger, L.; Hufenbach, J. Novel Fe-0.3Cr-0.4Mo-1.5Mn–3Ni-0.6C tool steel with superior properties under quasi-static and dynamic loading. Mater. Sci. Eng. A 2021, 829, 142156. [Google Scholar] [CrossRef]
- Zeisig, J.; Hufenbach, J.; Wendrock, H.; Gemming, T.; Eckert, J.; Kühn, U. A study of the micro- and nanoscale deformation behavior of individual austenitic dendrites in a FeCrMoVC cast alloy using micro- and nanoindentation experiments. Appl. Phys. Lett. 2016, 108, 143103. [Google Scholar] [CrossRef]
- Ţălu, Ş. Micro and Nanoscale Characterization of Three Dimensional Surfaces: Basics and Applications; Napoca Star: Cluj-Napoca, Romania, 2015; ISBN 9786066903493. [Google Scholar]
Sample | Phase | Space Group | a/nm | b/nm | c/nm | V/nm3 | Content/ wt% |
---|---|---|---|---|---|---|---|
Gravity casting | Fe | Im-3m | 0.28792(3) | 0.023867(8) | 74 | ||
Fe0.94C0.06 | Fm-3m | 0.3615(2) | 0.04723(8) | 16 | |||
VC | Fm-3m | 0.4181(3) | 0.07307(15) | 6 | |||
Mo2C | Pbcn | 0.4641(3) | 0.5903(3) | 0.5088(3) | 0.1394(2) | 4 | |
Centrifugal casting | Fe | Im-3m | 0.29157(8) | 0.02479(2) | 33 | ||
Fe | Im-3m | 0.28812(12) | 0.02392(3) | 26 | |||
Fe0.94C0.06 | Fm-3m | 0.36138(2) | 0.047194(9) | 36 | |||
VC | Fm-3m | 0.4178(-) | 0.07295(-) | 2 | |||
Mo2C | Pbcn | 0.4599(7) | 0.5863(13) | 0.506(2) | 0.1364(10) | 3 | |
Laser powder bed fusion | Fe | Im-3m | 0.2885(3) | 0.02401(7) | 57 | ||
Fe0.94C0.06 | Fm-3m | 0.3625(3) | 0.0476(1) | 38 | |||
VC | Fm-3m | 0.4181(7) | 0.0731(3) | 3 | |||
Mo2C | Pbcn | 0.462(3) | 0.589(4) | 0.505(4) | 0.138(3) | 2 |
Processing Route for FeCrMoVC | Yield Strength, 0.2% Offset/MPa | Ultimate Compressive Strength/MPa | Total Compressive Strain/% | Microhardness HV0.3 |
---|---|---|---|---|
Gravity casting | 2494 ± 11 | 4909 ± 117 | 31.5 ± 0.6 | 710 ± 34 |
Centrifugal casting | 1345 ± 86 | 4688 ± 390 | 18.6 ± 2.4 | 845 ± 19 |
Laser Powder Bed Fusion | 1338 ± 44 | 5326 ± 171 | 15.6 ± 1.0 | 900 ± 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kühn, U.; Sander, J.; Gabrysiak, K.N.; Giebeler, L.; Kosiba, K.; Pilz, S.; Neufeld, K.; Boehm, A.V.; Hufenbach, J.K. Approach to Estimate the Phase Formation and the Mechanical Properties of Alloys Processed by Laser Powder Bed Fusion via Casting. Materials 2022, 15, 7266. https://doi.org/10.3390/ma15207266
Kühn U, Sander J, Gabrysiak KN, Giebeler L, Kosiba K, Pilz S, Neufeld K, Boehm AV, Hufenbach JK. Approach to Estimate the Phase Formation and the Mechanical Properties of Alloys Processed by Laser Powder Bed Fusion via Casting. Materials. 2022; 15(20):7266. https://doi.org/10.3390/ma15207266
Chicago/Turabian StyleKühn, Uta, Jan Sander, Katharina Nicole Gabrysiak, Lars Giebeler, Konrad Kosiba, Stefan Pilz, Kai Neufeld, Anne Veronika Boehm, and Julia Kristin Hufenbach. 2022. "Approach to Estimate the Phase Formation and the Mechanical Properties of Alloys Processed by Laser Powder Bed Fusion via Casting" Materials 15, no. 20: 7266. https://doi.org/10.3390/ma15207266
APA StyleKühn, U., Sander, J., Gabrysiak, K. N., Giebeler, L., Kosiba, K., Pilz, S., Neufeld, K., Boehm, A. V., & Hufenbach, J. K. (2022). Approach to Estimate the Phase Formation and the Mechanical Properties of Alloys Processed by Laser Powder Bed Fusion via Casting. Materials, 15(20), 7266. https://doi.org/10.3390/ma15207266