Laser–Arc Hybrid Cladding of Al-Mg Alloy Coating on AZ80 Mg Alloy: Effect of Laser Beam Oscillations Amplitude
Abstract
:1. Introduction
2. Experimental Details
2.1. Raw Materials and Equipment
2.2. Phase Composition and Microstructure of Cladded Layer
2.3. Properties of Cladded Layer
3. Results and Discussion
Performance of the Cladded Layer
4. Conclusions
- (1)
- The penetration depth decreases significantly with the increase in oscillating amplitude, while welds are widened by the increase in the oscillating area of the laser beam.
- (2)
- Alloy segregation and keyhole-induced porosity can be suppressed by the laser beam oscillation because the stirring effect of the laser beam oscillation can promote the diffusion and liquid melt flow.
- (3)
- With the increase in oscillating amplitude, the content of Al in the top area of the seam can be diluted by the laser beam stirring. The diluting of the cladded Al alloy restrains the formation of the brittle Mg17Al12 phase, and then causes the weakening of hardness and wear resistance of the cladded layer.
- (4)
- The optimized oscillating amplitude was 1 mm, which can produce a weld seam with good appearance, fewer segregation and porosity defects, and acceptable hardness (180 HV) and wear resistance (4.2 × 10−4 mm3/(Nm)).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, G.; Wang, C.; Sun, M.; Ding, W. Recent developments and applications on high-performance cast magnesium rare-earth alloys. J. Magnes. Alloy. 2021, 9, 1–20. [Google Scholar] [CrossRef]
- Tan, J.; Ramakrishna, S. Applications of Magnesium and Its Alloys: A Review. Appl. Sci. 2021, 11, 6861. [Google Scholar] [CrossRef]
- Mo, N.; Tan, Q.; Bermingham, M.; Huang, Y.; Dieringa, H.; Hort, N.; Zhang, M.-X. Current development of creep-resistant magnesium cast alloys: A review. Mater. Des. 2018, 155, 422–442. [Google Scholar] [CrossRef]
- Dieringa, H.; StJohn, D.; Pérez Prado, M.T.; Kainer, K.U. Editorial: Latest Developments in the Field of Magnesium Alloys and Their Applications. Front. Mater. 2021, 8, 726297. [Google Scholar] [CrossRef]
- Kulekci, M.K. Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 2007, 39, 851–865. [Google Scholar] [CrossRef]
- Sezer, N.; Evis, Z.; Kayhan, S.M.; Tahmasebifar, A.; Koç, M. Review of magnesium-based biomaterials and their applications. J. Magnes. Alloy. 2018, 6, 23–43. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Abbott, T.B. Magnesium: Industrial and Research Developments Over the Last 15 Years. Corrosion 2015, 71, 120–127. [Google Scholar] [CrossRef]
- Tokunaga, T.; Ohno, M.; Matsuura, K. Coatings on Mg alloys and their mechanical properties: A review. J. Mater. Sci. Technol. 2018, 34, 1119–1126. [Google Scholar] [CrossRef]
- Gray, J.E.; Luan, B.J.C. Protective coatings on magnesium and its alloys—A critical review. J. Alloys Compd. 2002, 336, 88–113. [Google Scholar] [CrossRef]
- Riquelme, A.; Rodrigo, P. An Introduction on the Laser Cladding Coatings on Magnesium Alloys. Metals 2021, 11, 1993. [Google Scholar] [CrossRef]
- DeForce, B.S.; Eden, T.J.; Potter, J.K. Cold Spray Al-5% Mg Coatings for the Corrosion Protection of Magnesium Alloys. J. Therm. Spray Technol. 2011, 20, 1352–1358. [Google Scholar] [CrossRef]
- Tan, C.; Zhu, H.; Kuang, T.; Shi, J.; Liu, H.; Liu, Z. Laser cladding Al-based amorphous-nanocrystalline composite coatings on AZ80 magnesium alloy under water cooling condition. J. Alloys Compd. 2017, 690, 108–115. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, C.; Lin, Q.; Liu, H.; Yao, M. Broad-beam laser cladding of Al–Si alloy coating on AZ91HP magnesium alloy. Surf. Coat. Technol. 2006, 201, 2701–2706. [Google Scholar] [CrossRef]
- Meng, G.; Yue, T.M.; Lin, X.; Yang, H.; Xie, H.; Ding, X. Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites. Opt. Laser Technol. 2015, 70, 119–127. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, C. Autogenous laser-welded dissimilar joint of ferritic/martensitic P92 steel and Inconel 617 alloy: Mechanism, microstructure, and mechanical properties. Arch. Civ. Mech. Eng. 2022, 22, 39. [Google Scholar] [CrossRef]
- Khorasani, M.; Ghasemi, A.; Leary, M.; Sharabian, E.; Cordova, L.; Gibson, I.; Downing, D.; Bateman, S.; Brandt, M.; Rolfe, B. The effect of absorption ratio on meltpool features in laser-based powder bed fusion of IN718. Opt. Laser Technol. 2022, 153, 108263. [Google Scholar] [CrossRef]
- Yao, X.Y.; Tang, J.C.; Zhou, Y.H.; Huang, Z.Z.; Xu, J.B.; Long, Y.; Tan, L.L.; Wiese, B.; Ebel, T.; Yan, M. Selective laser melting of an Mg/Metallic Glass hybrid for significantly improving chemical and mechanical performances. Appl. Surf. Sci. 2022, 580, 152229. [Google Scholar] [CrossRef]
- Sirohi, S.; Gupta, A.; Pandey, C.; Vidyarthy, R.S.; Guguloth, K.; Natu, H. Investigation of the microstructure and mechanical properties of the laser welded joint of P22 and P91 steel. Opt. Laser Technol. 2022, 147, 107610. [Google Scholar] [CrossRef]
- Giganto, S.; Martínez-Pellitero, S.; Cuesta, E.; Zapico, P.; Barreiro, J. Proposal of design rules for improving the accuracy of selective laser melting (SLM) manufacturing using benchmarks parts. Rapid Prototyp. J. 2022, 28, 1129–1143. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, S.; Wang, Z.; Liang, Y. The effect of welding speed on microstructures of cold metal transfer deposited AZ31 magnesium alloy clad. Mater. Des. 2015, 86, 894–901. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Zhang, Y.; Wei, S.; Pei, X.; Yang, L. Cold arc cladding of aluminum coatings on AZ61 magnesium alloy: A comparative study. Surf. Coat. Technol. 2019, 375, 442–457. [Google Scholar] [CrossRef]
- Fritzsch, K.; Buchwalder, A.; Zenker, R.; Jung, A. Influence of electron beam liquid phase surface treatments on the corrosion resistance of AZ91D using different additive deposition techniques. Corros. Sci. 2014, 88, 109–117. [Google Scholar] [CrossRef]
- Fritzsch, K.; Buchwalder, A.; Zenker, R.; Klemm, M.J.M.S.F. Influence of Microstructure on the Corrosion Resistance of AZ91D After EB Surface Alloying. Mater. Sci. Forum 2013, 765, 607–611. [Google Scholar] [CrossRef]
- Xiao, J.; Rogacheva, A.V.; Yarmolenko, V.A.; Rogacheva, A.A.; Jiang, X.; Sun, D.; Yarmolenko, M.A. Magnesium containing coatings formed by a low-energy electron beam. Surf. Coat. Technol. 2018, 349, 61–70. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Dubey, A.K. Recent trends in laser cladding and surface alloying. Opt. Laser Technol. 2021, 134, 106619. [Google Scholar] [CrossRef]
- Linares, J.-M.; Chaves-Jacob, J.; Lopez, Q.; Sprauel, J.-M. Fatigue life optimization for 17-4Ph steel produced by selective laser melting. Rapid Prototyp. J. 2022, 28, 1182–1192. [Google Scholar] [CrossRef]
- Das, A.K. Recent trends in laser cladding and alloying on magnesium alloys: A review. Mater. Today Proc. 2022, 51, 723–727. [Google Scholar] [CrossRef]
- Acherjee, B. Hybrid laser arc welding: State-of-art review. Opt. Laser Technol. 2018, 99, 60–71. [Google Scholar] [CrossRef]
- Liu, L.M.; Song, G.; Zhu, M.L. Low-Power Laser/Arc Hybrid Welding Behavior in AZ-Based Mg Alloys. Metall. Mater. Trans. A 2008, 39, 1702–1711. [Google Scholar] [CrossRef]
- Chen, M.; Xin, L.; Zhou, Q.; He, L.; Wu, F. Effect of laser pulse on alternative current arc discharge during laser-arc hybrid welding of magnesium alloy. Opt. Lasers Eng. 2018, 100, 208–215. [Google Scholar] [CrossRef]
- Silva, R.G.N.; Pereira, M.; Rodrigues, M.B.; Pereira, A.d.S.P.; Schwedersky, M.B. Electric evaluation of hybrid laser-TIG welding: Interaction between arc and laser plume. J. Laser Appl. 2020, 32, 022035. [Google Scholar] [CrossRef]
- Liu, L.; Chen, M. Interactions between laser and arc plasma during laser–arc hybrid welding of magnesium alloy. Opt. Lasers Eng. 2011, 49, 1224–1231. [Google Scholar] [CrossRef]
- Meng, Y.; Gao, M.; Zeng, X. Quantitative analysis of synergic effects during laser-arc hybrid welding of AZ31 magnesium alloy. Opt. Lasers Eng. 2018, 111, 183–192. [Google Scholar] [CrossRef]
- Ola, O.T.; Doern, F.E. Keyhole-induced porosity in laser-arc hybrid welded aluminum. Int. J. Adv. Manuf. Technol. 2015, 80, 3–10. [Google Scholar] [CrossRef]
- Ribic, B.; Palmer, T.A.; DebRoy, T. Problems and issues in laser-arc hybrid welding. Int. Mater. Rev. 2013, 54, 223–244. [Google Scholar] [CrossRef]
- Lijun, X.; Sanbao, L.; Xuping, L.; Zhigang, P.; Fufa, W.; Minghua, C.J.R.M.M. Relationship Between Molten Pool Behavior and Keyhole-Induced Porosity in Pulsed Laser-arc Hybrid Welding of Magnesium Alloy. Rare Met. Mater. Eng. 2020, 49, 1894–1900. [Google Scholar]
- Leo, P.; Renna, G.; Casalino, G.; Olabi, A.G. Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy. Opt. Laser Technol. 2015, 73, 118–126. [Google Scholar] [CrossRef]
- Liu, L.; Hao, X. Improvement of laser keyhole formation with the assistance of arc plasma in the hybrid welding process of magnesium alloy. Opt. Lasers Eng. 2009, 47, 1177–1182. [Google Scholar] [CrossRef]
- Norris, J.T.; Robino, C.V.; Hirschfeld, D.A.; Perricone, M.J.J.W.J. Effects of Laser Parameters on Porosity Formation: Investigating Millimeter Scale Continous Wave Nd: YAG Laser Welds. Weld J. 2011, 90, 198. [Google Scholar]
- Huang, L.; Hua, X.; Wu, D.; Ye, Y. Role of welding speed on keyhole-induced porosity formation based on experimental and numerical study in fiber laser welding of Al alloy. Int. J. Adv. Manuf. Technol. 2019, 103, 913–925. [Google Scholar] [CrossRef]
- Hu, K.; Muneer, W.; Zhang, J.; Zhan, X. Effect of beam oscillating frequency on the microstructure and mechanical properties of dissimilar laser welding of AA2060 and AA6061 alloy. Mater. Sci. Eng. A 2022, 832, 142431. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Yang, C.; Gao, M. Study of porosity suppression in oscillating laser-MIG hybrid welding of AA6082 aluminum alloy. J. Mater. Process. Technol. 2021, 292, 117053. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, J.; Huang, S.; Hu, Z.; Meng, X.; Feng, X. Effect of laser surface melting with alternating magnetic field on wear and corrosion resistance of magnesium alloy. Surf. Coat. Technol. 2017, 309, 212–219. [Google Scholar] [CrossRef]
- Liu, F.; Xu, B.; Song, K.; Tan, C.; Zhao, H.; Wang, G.; Chen, B.; Song, X. Improvement of penetration ability of heat source for 316 stainless steel welds produced by alternating magnetic field assisted laser-MIG hybrid welding. J. Mater. Process. Technol. 2022, 299, 117329. [Google Scholar] [CrossRef]
- Sonia, P.; Jain, J.K.; Saxena, K.K. Influence of ultrasonic vibration assistance in manufacturing processes: A Review. Mater. Manuf. Process. 2021, 36, 1451–1475. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, H.; Li, Z.; Cui, W.; Shi, Y. Effect of ultrasonic power on porosity, microstructure, mechanical properties of the aluminum alloy joint by ultrasonic assisted laser-MIG hybrid welding. Opt. Laser Technol. 2019, 119, 105619. [Google Scholar] [CrossRef]
- Hirohata, M.; Takeda, F.; Suzaki, M.; Inose, K.; Matsumoto, N.; Abe, D. Influence of laser-arc hybrid welding conditions on cold cracking generation. Weld. World 2019, 63, 1407–1416. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Y.; Chen, C.; Zeng, X.; Gao, M. Suppressing porosity of a laser keyhole welded Al-6Mg alloy via beam oscillation. J. Mater. Process. Technol. 2020, 278, 116382. [Google Scholar] [CrossRef]
- Wang, Z.; Oliveira, J.P.; Zeng, Z.; Bu, X.; Peng, B.; Shao, X. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties. Opt. Laser Technol. 2019, 111, 58–65. [Google Scholar] [CrossRef]
Materials | Reference Composition (wt. %) | ||||||||
---|---|---|---|---|---|---|---|---|---|
5356 welding wire | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
≤0.25 | ≤0.4 | ≤0.1 | 0.05–0.2 | 4.5–5.5 | 0.05–0.2 | ≤0.1 | 0.06–0.2 | Bal. | |
AZ80A | Al | Zn | Mn | Si | Fe | Cu | Ni | Be | Mg |
7.8–9.2 | 020–0.80 | 0.15–0.50 | ≤0.10 | ≤0.05 | ≤0.05 | ≤0.005 | ≤0.01 | Bal. |
Parameters | Value |
---|---|
Laser power | 2500 W |
Welding speed | 2 m/min |
Filling speed | 4 m/min |
Defocused distance | 0 mm |
Arc current | 50−150 A |
Oscillation pattern | Circular |
Beam oscillating amplitude | 0−2.0 mm |
Beam oscillating frequency | 500 Hz |
Shielding gas | Pure argon |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Z.; Zhao, Y.; Han, G.; Wang, W.; Zhou, K.; He, T.; Sun, Y. Laser–Arc Hybrid Cladding of Al-Mg Alloy Coating on AZ80 Mg Alloy: Effect of Laser Beam Oscillations Amplitude. Materials 2022, 15, 7272. https://doi.org/10.3390/ma15207272
Ren Z, Zhao Y, Han G, Wang W, Zhou K, He T, Sun Y. Laser–Arc Hybrid Cladding of Al-Mg Alloy Coating on AZ80 Mg Alloy: Effect of Laser Beam Oscillations Amplitude. Materials. 2022; 15(20):7272. https://doi.org/10.3390/ma15207272
Chicago/Turabian StyleRen, Zhiqiang, Yang Zhao, Guofeng Han, Wenyu Wang, Kebin Zhou, Tianpeng He, and Yu Sun. 2022. "Laser–Arc Hybrid Cladding of Al-Mg Alloy Coating on AZ80 Mg Alloy: Effect of Laser Beam Oscillations Amplitude" Materials 15, no. 20: 7272. https://doi.org/10.3390/ma15207272
APA StyleRen, Z., Zhao, Y., Han, G., Wang, W., Zhou, K., He, T., & Sun, Y. (2022). Laser–Arc Hybrid Cladding of Al-Mg Alloy Coating on AZ80 Mg Alloy: Effect of Laser Beam Oscillations Amplitude. Materials, 15(20), 7272. https://doi.org/10.3390/ma15207272