Estimation of Average Grain Size from Microstructure Image Using a Convolutional Neural Network
Abstract
:1. Introduction
2. Model Description
2.1. Preparation of Microstructure Images
2.2. Convolutional Neural Network
3. Results and Discussion
3.1. Preliminary Analysis of Microstructure
3.2. Accuracy of Machine Learning
3.3. Additional Validation of CNN
3.4. Analysis of Mid-Layer Images
4. Conclusions
- (1)
- The average grain sizes predicted by the CNN within the training range coincided with the measured values with high accuracy;
- (2)
- If machine learning yields appropriate results within the training range, the accuracy of the machine learning results outside the training range is expected to be very high. Thus, the trained function may be used universally, regardless of the average grain size in the image;
- (3)
- The mid-layer image analysis shows that the CNN used in this study does not recognize the shape of an entire grain but mainly detects components of the grain boundary. In this study, machine learning was optimized in the form of a neural network that detects the curvature of grain boundaries and correlates it with the overall average grain size;
- (4)
- To apply the results of this study to actual cases, it is necessary to construct a large database of microstructures with various types of grain structures.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morris, J.W. The Influence of Grain Size on the Mechanical Properties of Steel; U.S. Department of Energy: Washington, DC, USA, 2001; Technical Report No. LBNL—47875. [CrossRef] [Green Version]
- Yuan, X.; Chen, L.; Zhao, Y.; Di, H.; Zhu, F. Dependence of Grain Size on Mechanical Properties and Microstructures of High Manganese Austenitic Steel. Procedia Eng. 2014, 81, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Saunders, R.; Achuthan, A.; Iliopoulos, A.; Michopoulos, J.; Bagchi, A. Influence of Grain Size and Shape on Mechanical Properties of Metal Am Materials. In Solid Freeform Fabrication 2018, Proceedings of the 29th Annual International 1751 Solid Freeform Fabrication Symposium, Austin, TX, USA, 13–15 August 2018; The University of Texas at Austin: Austin, TX, USA, 2018; 12p. [Google Scholar]
- Kang, S.-J.L. Normal Grain Growth and Second-Phase Particles. In Sintering; Elsevier: Amsterdam, The Netherlands, 2005; pp. 91–96. ISBN 978-0-7506-6385-4. [Google Scholar]
- Holm, E.A.; Foiles, S.M. How Grain Growth Stops: A Mechanism for Grain-Growth Stagnation in Pure Materials. Science 2010, 328, 1138–1141. [Google Scholar] [CrossRef] [PubMed]
- Standard Test Methods for Determining Average Grain Size. Available online: https://www.astm.org/e0112-13r21.html (accessed on 17 May 2022).
- Gola, J.; Britz, D.; Staudt, T.; Winter, M.; Schneider, A.S.; Ludovici, M.; Mücklich, F. Advanced Microstructure Classification by Data Mining Methods. Comput. Mater. Sci. 2018, 148, 324–335. [Google Scholar] [CrossRef]
- Bostanabad, R.; Zhang, Y.; Li, X.; Kearney, T.; Brinson, L.C.; Apley, D.W.; Liu, W.K.; Chen, W. Computational Microstructure Characterization and Reconstruction: Review of the State-of-the-Art Techniques. Prog. Mater. Sci. 2018, 95, 1–41. [Google Scholar] [CrossRef]
- Chowdhury, A.; Kautz, E.; Yener, B.; Lewis, D. Image Driven Machine Learning Methods for Microstructure Recognition. Comput. Mater. Sci. 2016, 123, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.-J.; Hwang, I.-K.; Cho, I.-S.; Kim, H.-S. Estimation of Chemical Composition of Al-Si Cast Alloys Using Image Recognition. Korean J. Met. Mater. 2019, 57, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Farizhandi, A.A.K.; Mamivand, M. Processing Time, Temperature, and Initial Chemical Composition Prediction from Materials Microstructure by Deep Network for Multiple Inputs and Fused Data. Mater. Des. 2022, 219, 110799. [Google Scholar] [CrossRef]
- Kondo, R.; Yamakawa, S.; Masuoka, Y.; Tajima, S.; Asahi, R. Microstructure Recognition Using Convolutional Neural Networks for Prediction of Ionic Conductivity in Ceramics. Acta Mater. 2017, 141, 29–38. [Google Scholar] [CrossRef]
- Wan, W.; Li, D.; Wang, H.; Zhao, L.; Shen, X.; Sun, D.; Chen, J.; Xiao, C. Automatic Identification and Quantitative Characterization of Primary Dendrite Microstructure Based on Machine Learning. Crystals 2021, 11, 1060. [Google Scholar] [CrossRef]
- Nikolić, F.; Štajduhar, I.; Čanađija, M. Casting Microstructure Inspection Using Computer Vision: Dendrite Spacing in Aluminum Alloys. Metals 2021, 11, 756. [Google Scholar] [CrossRef]
- Berus, L.; Skakun, P.; Rajnovic, D.; Janjatovic, P.; Sidjanin, L.; Ficko, M. Determination of the Grain Size in Single-Phase Materials by Edge Detection and Concatenation. Metals 2020, 10, 1381. [Google Scholar] [CrossRef]
- Dengiz, O.; Smith, A.E.; Nettleship, I. Grain Boundary Detection in Microstructure Images Using Computational Intelligence. Comput. Ind. 2005, 56, 854–866. [Google Scholar] [CrossRef]
- Baggs, G.S.; Guerrier, P.; Loeb, A.; Jones, J.C. Automated Copper Alloy Grain Size Evaluation Using a Deep-Learning CNN. arXiv 2020, arXiv:2005.09634. [Google Scholar]
- Lee, J.-C.; Hsu, H.-H.; Liu, S.-C.; Chen, C.-H.; Huang, H.-C. Fast Image Classification for Grain Size Determination. Metals 2021, 11, 1547. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, D.I.; Kim, W.T.; Park, Y.B. Computer Simulations of Two-Dimensional and Three-Dimensional Ideal Grain Growth. Phys. Rev. E 2006, 74, 061605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darvishi Kamachali, R.; Steinbach, I. 3-D Phase-Field Simulation of Grain Growth: Topological Analysis versus Mean-Field Approximations. Acta Mater. 2012, 60, 2719–2728. [Google Scholar] [CrossRef]
- Kim, H.-S. Von Neumann–Mullins Equation in the Potts Model of Two-Dimensional Grain Growth. Comput. Mater. Sci. 2010, 50, 600–606. [Google Scholar] [CrossRef]
- LeCun, Y.; Huang, F.J.; Bottou, L. Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington, DC, USA, 27 June–2 July 2004; IEEE: Washington, DC, USA, 2004; Volume 2, pp. 97–104. [Google Scholar]
- Wasserman, P.D. Advanced Methods in Neural Computing; Van Nostrand Reinhold: New York, NY, USA, 1993; ISBN 978-0-442-00461-3. [Google Scholar]
- Chollet, F. Deep Learning with Python; Manning Publications Co.: Shelter Island, NY, USA, 2018; ISBN 978-1-61729-443-3. [Google Scholar]
- Saito Goki Deep Learning from Scratch; O’Reilly Japan: Tokyo, Japan, 2016; ISBN 978-4-87311-758-4.
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Python Software Foundation. Available online: https://www.python.org/psf/ (accessed on 29 June 2021).
- Keras: The Python Deep Learning API. Available online: https://keras.io/ (accessed on 17 May 2022).
Layer. | Sublayer | Input Shape | Channels /Nodes | Filter | Padding | Stride | Activation | Output Shape |
---|---|---|---|---|---|---|---|---|
Input | – | – | 3 | – | – | – | – | 512 × 512 × 3 |
Resize | – | 512 × 512 × 3 | 3 | – | – | – | – | 256 × 256 × 3 |
CP1 | Convolution | 256 × 256 × 3 | 4 | 3 × 3 | 1 × 1 | 1 × 1 | ReLU | 256 × 256 × 4 |
Max pooling | 256 × 256 × 4 | – | 2 × 2 | 0 × 0 | 2 × 2 | – | 128 × 128 × 4 | |
CP2 | Convolution | 128 × 128 × 4 | 8 | 3 × 3 | 1 × 1 | 1 × 1 | ReLU | 128 × 128 × 8 |
Max pooling | 128 × 128 × 8 | – | 2 × 2 | 0 × 0 | 2 × 2 | – | 64 × 64 × 8 | |
CP3 | Convolution | 64 × 64 × 8 | 16 | 3 × 3 | 1 × 1 | 1 × 1 | ReLU | 64 × 64 × 16 |
Max pooling | 64 × 64 × 16 | – | 2 × 2 | 0 × 0 | 2 × 2 | – | 32 × 32 × 16 | |
CP4 | Convolution | 32 × 32 × 16 | 32 | 3 × 3 | 1 × 1 | 1 × 1 | ReLU | 32 × 32 × 32 |
Max pooling | 32 × 32 × 32 | – | 2 × 2 | 0 × 0 | 2 × 2 | – | 16 × 16 × 32 | |
Flatten | – | 16 × 16 × 32 | 8192 | – | – | – | – | 8192 × 1 |
Dropout | (0.5) | 8192 × 1 | 8192 | – | – | – | – | 8192 × 1 |
FC | – | 8192 × 1 | 128 | – | – | – | ReLU | 1 |
Output | – | – | 1 | – | – | – | Linear | Regressed value |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.-H.; Lee, S.-J.; Kim, H.-S. Estimation of Average Grain Size from Microstructure Image Using a Convolutional Neural Network. Materials 2022, 15, 6954. https://doi.org/10.3390/ma15196954
Jung J-H, Lee S-J, Kim H-S. Estimation of Average Grain Size from Microstructure Image Using a Convolutional Neural Network. Materials. 2022; 15(19):6954. https://doi.org/10.3390/ma15196954
Chicago/Turabian StyleJung, Jun-Ho, Seok-Jae Lee, and Hee-Soo Kim. 2022. "Estimation of Average Grain Size from Microstructure Image Using a Convolutional Neural Network" Materials 15, no. 19: 6954. https://doi.org/10.3390/ma15196954
APA StyleJung, J.-H., Lee, S.-J., & Kim, H.-S. (2022). Estimation of Average Grain Size from Microstructure Image Using a Convolutional Neural Network. Materials, 15(19), 6954. https://doi.org/10.3390/ma15196954