High Throughput Preparation of Ag-Zn Alloy Thin Films for the Electrocatalytic Reduction of CO2 to CO
Abstract
1. Introduction
2. Experimental
2.1. Catalysts Preparation
2.2. Material Characterizations
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Preparation and Characterization of the Ag-Zn Alloys as well as Pure Ag, Zn Films
3.2. Electrochemical CO2RR Performance over Ag-Zn Alloys as well as Pure Ag, Zn Films in the H-Cell
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turner, J.A. A Realizable Renewable Energy Future. Science 1999, 285, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Spinner, N.S.; Vega, J.A.; Mustain, W.E. Recent Progress in the Electrochemical Conversion and Utilization of CO2. Catal. Sci. Technol. 2012, 2, 19–28. [Google Scholar] [CrossRef]
- Peter, S.C. Reduction of CO2 to Chemicals and Fuels: A Solution to Global Warming and Energy Crisis. ACS Energy Lett. 2018, 3, 1557–1561. [Google Scholar] [CrossRef]
- Tu, W.G.; Zhou, Y.; Zou, Z.G. Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Adv. Mater. 2014, 26, 4607–4626. [Google Scholar] [PubMed]
- Lahijani, P.; Zainal, Z.A.; Mohammadi, M.; Mohamed, A.R. Conversion of the Greenhouse Gas CO2 to the Fuel Gas CO via the Boudouard Reaction: A Review. Renew. Sustain. Energy Rev. 2015, 41, 615–632. [Google Scholar]
- Gonzales, J.N.; Matson, M.M.; Atsumi, S. Nonphotosynthetic Biological CO2 Reduction. Biochemistry 2019, 58, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Hirunsit, P.; Soodsawang, W.; Limtrakul, J. CO2 Electrochemical Reduction to Methane and Methanol on Copper-Based Alloys: Theoretical insight. J. Phys. Chem. C 2015, 119, 8238–8249. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, H.; Kim, J.; Ahn, S.H.; Chang, S.T. All-Water-Based Solution Processed Ag Nanofilms for Highly Efficient Electrocatalytic Reduction of CO2 to CO. Appl. Catal. B Environ. 2019, 259, 118045. [Google Scholar] [CrossRef]
- Ramdin, M.; Morrison, A.R.T.; de Groen, M.; van Haperen, R.; de Kler, R.; van den Broeke, L.J.P.; Trusler, J.P.M.; de Jong, W.; Vlugt, T.J.H. High Pressure Electrochemical Reduction of CO2 to Formic Acid/Formate: A Comparison Between Bipolar Membranes and Cation Exchange Nembranes. Ind. Eng. Chem. Res. 2019, 58, 1834–1847. [Google Scholar] [CrossRef]
- Centi, G.; Quadrelli, E.A.; Perathoner, S. Catalysis for CO2 Conversion: A Key Technology for Rapid Introduction of Renewable Energy in the Value Chain of Chemical Industries. Energy Environ. Sci. 2013, 6, 1711–1731. [Google Scholar] [CrossRef]
- Gao, Y.; Li, F.; Zhou, P.; Wang, Z.; Zheng, Z.; Wang, P.; Liu, Y.; Dai, Y.; Whangbo, M.-H.; Huang, B. Enhanced Selectivity and Activity for Electrocatalytic Reduction of CO2 to CO on an Anodized Zn/Carbon/Ag Electrode. J. Mater. Chem. A 2019, 7, 16685–16689. [Google Scholar] [CrossRef]
- Jo, A.; Kim, S.; Park, H.; Park, H.-Y.; Jang, J.H.; Park, H.S. Enhanced Electrochemical Conversion of CO2 to CO at Bimetallic Ag-Zn Catalysts Formed on Polypyrrole-Coated Electrode. J. Catal. 2021, 393, 92–99. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; Shi, M.; Yan, J.; Jiang, Q. Simultaneous Achieving of High Faradaic Efficiency and CO Partial Current Density for CO2 Reduction via Robust, Noble-Metal-Free Zn Nanosheets with Favorable Adsorption Energy. Adv. Energy Mater. 2019, 9, 1900276. [Google Scholar] [CrossRef]
- Lu, Q.; Rosen, J.; Jiao, F. Nanostructured Metallic Electrocatalysts for Carbon Dioxide Reduction. Chemcatchem 2015, 7, 38–47. [Google Scholar] [CrossRef]
- Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrocatalytic Process of CO Selectivity in Electrochemical Reduction of CO2 at Metal-Electrodes in Aqueous-Media. Electrochim. Acta. 1994, 39, 1833–1839. [Google Scholar] [CrossRef]
- Jones, J.P.; Prakash, G.K.S.; Olah, G.A. Electrochemical CO2 Reduction: Recent Advances and Current Trends. Isr. J. Chem. 2014, 54, 1451–1466. [Google Scholar] [CrossRef]
- Peterson, A.A.; Nørskov, J.K. Activity descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts. J. Phys. Chem. Lett. 2012, 3, 251–258. [Google Scholar] [CrossRef]
- Hatsukade, T.; Kuhl, K.P.; Cave, E.R.; Abram, D.N.; Jaramillo, T.F. Insights into the Electrocatalytic Reduction of CO2 on Metallic Silver Surfaces. Phys. Chem. Chem. Phys. 2014, 16, 13814–13819. [Google Scholar] [CrossRef]
- Lee, C.Y.; Zhao, Y.; Wang, C.Y.; Mitchell, D.R.G.; Wallace, G.G. Rapid Formation of Self-Organised Ag Nanosheets with High Efficiency and Selectivity in CO2 Electroreduction to CO. Sustain. Energy Fuels 2017, 1, 1023–1027. [Google Scholar] [CrossRef]
- Zhong, H.X.; Ghorbani-Asl, M.; Ly, K.H.; Zhang, J.C.; Ge, J.; Wang, M.C.; Liao, Z.Q.; Makarov, D.; Zschech, E.; Brunner, E.; et al. Synergistic Electroreduction of Carbon Dioxide to Carbon Monoxide on Bimetallic Layered Conjugated Metal-Organic Frameworks. Nat. Commun. 2020, 11, 1409. [Google Scholar] [CrossRef]
- Feaster, J.T.; Shi, C.; Cave, E.R.; Hatsukade, T.; Abram, D.N.; Kuhl, K.P.; Hahn, C.; Nørskov, J.K.; Jaramillo, T.F. Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catal. 2017, 7, 4822–4827. [Google Scholar] [CrossRef]
- Hitt, J.L.; Li, Y.C.; Tao, S.; Yan, Z.; Gao, Y.; Billinge, S.J.L.; Mallouk, T.E. A High Throughput Optical Method for Studying Compositional Effects in Electrocatalysts for CO2 Reduction. Nat. Commun. 2021, 12, 1114. [Google Scholar] [CrossRef]
- Gerken, J.B.; Shaner, S.E.; Masse, R.C.; Porubsky, N.J.; Stahl, S.S. A Survey of Diverse Earth Abundant Oxygen Evolution Electrocatalysts Showing Enhanced Activity from Ni-Fe Oxides Containing a Third Metal. Energy Environ. Sci. 2014, 7, 2376–2382. [Google Scholar] [CrossRef]
- Sun, J.M.; Yu, B.; Tan, F.Q.; Yang, W.F.; Cheng, G.H.; Zhang, Z.H. High Throughput Preparation of Ni-Mo alloy Thin Films as Efficient Bifunctional Electrocatalysts for Water Splitting. Int. J. Hydrogen Energy 2022, 47, 15764–15774. [Google Scholar] [CrossRef]
- Gao, H.; Yan, X.J.; Niu, J.Z.; Zhang, Y.; Song, M.J.; Shi, Y.J.; Ma, W.S.; Qin, J.Y.; Zhang, Z.H. Scalable Structural Refining via Altering Working Pressure and In-situ Electrochemically-Driven Cu-Sb Alloying of Magnetron Sputtered Sb Anode in Sodium Ion Batteries. Chem. Eng. J. 2020, 388, 124299. [Google Scholar] [CrossRef]
- Liu, N.; Yin, K.; Si, C.; Kou, T.; Zhang, Y.; Ma, W.; Zhang, Z. Hierarchically Porous Nickel-Iridium-Ruthenium-Aluminum Alloys with Tunable Compositions and Electrocatalytic Activities towards the Oxygen/Hydrogen Evolution Reaction in Acid Electrolyte. J. Mater. Chem. A 2020, 8, 6245–6255. [Google Scholar] [CrossRef]
- Lamaison, S.; Wakerley, D.; Kracke, F.; Moore, T.; Zhou, L.; Lee, D.U.; Wang, L.; Hubert, M.A.; Aviles Acosta, J.E.; Gregoire, J.M.; et al. Designing a Zn-Ag Catalyst Matrix and Electrolyzer System for CO2 Conversion to CO and Beyond. Adv. Mater. 2022, 34, 2103963. [Google Scholar] [CrossRef]
- Hansen, H.A.; Varley, J.B.; Peterson, A.A.; Norskov, J.K. Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO. J. Phys. Chem. Lett. 2013, 4, 388–392. [Google Scholar] [CrossRef]
- Hori, Y. CO2 Reduction Using Electrochemical Approach. In Solar to Chemical Energy Conversion, 1st ed.; Springer: New York, NY, USA, 2016; pp. 191–211. [Google Scholar]
- Kuhl, K.P.; Hatsukade, T.; Cave, E.R.; Abram, D.N.; Kibsgaard, J.; Jaramillo, T.F. Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113. [Google Scholar] [CrossRef]
- Hatsukade, T.; Kuhl, K.P.; Cave, E.R.; Abram, D.N.; Feaster, J.T.; Jongerius, A.L.; Hahn, C.; Jaramillo, T.F. Carbon Dioxide Electroreduction Using a Silver-Zinc Alloy. Energy Technol. 2017, 5, 955–961. [Google Scholar] [CrossRef]
- Giamello, E.G.; Fubini, B. Heat of Adsorption of Carbon Monoxide on Zinc Oxide Pretreated by Various Methods. J. Chem. Soc. Faraday Trans. I 1983, 79, 1995–2003. [Google Scholar] [CrossRef]
- Park, S.A.; Lim, H.; Kim, Y.T. Enhanced Oxygen Reduction Reactionactivity Due to Electronic Effects Between Ag and Mn3O4 in Alkaline Media. ACS Catal. 2015, 5, 3995–4002. [Google Scholar] [CrossRef]
- Tang, W.; Huang, D.L.; Wu, L.L.; Zhao, C.Z.; Xu, L.L.; Gao, H.; Zhang, X.T.; Wang, W.B. Surface Plasmon Enhanced Ultraviolet emission and Observation of Random Lasing from Self-Assembly Zn/ZnO Composite Nanowires. Crystengcomm 2011, 13, 2336–2339. [Google Scholar] [CrossRef]
- Zhao, Z.; Lu, G. Computational Screening of Near-Surface Alloys for CO2 Electroreduction. ACS Catal. 2018, 8, 3885–3894. [Google Scholar] [CrossRef]
- Guo, W.; Shim, K.; Kim, Y.-T. Ag Layer Deposited on Zn by Physical Vapor Deposition with Enhanced CO Selectivity for Electrochemical CO2 Reduction. Appl. Surf. Sci. 2020, 526, 146651. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, G.; Luo, D.; Ren, B.; Zhu, Y.; Gao, R.; Dou, H.; Sun, G.; Feng, M.; Bai, Z.; et al. “Two Ships in a Bottle” Design for Zn-Ag-O Catalyst Enabling Selective and Long-Lasting CO2 Electroreduction. J. Am. Chem. Soc. 2021, 143, 6855–6864. [Google Scholar] [CrossRef]
- Lamaison, S.; Wakerley, D.; Blanchard, J.; Montero, D.; Rousse, G.; Mercier, D.; Marcus, P.; Taverna, D.; Giaume, D.; Mougel, V.; et al. High-Current-Density CO2-to-CO Electroreduction on Ag-Alloyed Zn Dendrites at Elevated Pressure. Joule 2020, 4, 395–406. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Yu, B.; Yan, X.; Wang, J.; Tan, F.; Yang, W.; Cheng, G.; Zhang, Z. High Throughput Preparation of Ag-Zn Alloy Thin Films for the Electrocatalytic Reduction of CO2 to CO. Materials 2022, 15, 6892. https://doi.org/10.3390/ma15196892
Sun J, Yu B, Yan X, Wang J, Tan F, Yang W, Cheng G, Zhang Z. High Throughput Preparation of Ag-Zn Alloy Thin Films for the Electrocatalytic Reduction of CO2 to CO. Materials. 2022; 15(19):6892. https://doi.org/10.3390/ma15196892
Chicago/Turabian StyleSun, Jiameng, Bin Yu, Xuejiao Yan, Jianfeng Wang, Fuquan Tan, Wanfeng Yang, Guanhua Cheng, and Zhonghua Zhang. 2022. "High Throughput Preparation of Ag-Zn Alloy Thin Films for the Electrocatalytic Reduction of CO2 to CO" Materials 15, no. 19: 6892. https://doi.org/10.3390/ma15196892
APA StyleSun, J., Yu, B., Yan, X., Wang, J., Tan, F., Yang, W., Cheng, G., & Zhang, Z. (2022). High Throughput Preparation of Ag-Zn Alloy Thin Films for the Electrocatalytic Reduction of CO2 to CO. Materials, 15(19), 6892. https://doi.org/10.3390/ma15196892