Concrete Made with Dune Sand: Overview of Fresh, Mechanical and Durability Properties
Abstract
:1. Introduction
2. Physical and Chemical Properties
3. Slump Flow
4. Mechanical Strength
4.1. Compressive Strength
4.2. Tensile Strength
4.3. Flexural Strength
5. Durability
5.1. Dry Density
5.2. Water Absorption
5.3. Ultrasonic Pulse Velocity (UPV)
5.4. Sulfate Resistance
5.4.1. Visual Observation
5.4.2. X-ray Diffraction (XRD)
5.4.3. Strength (Compressive and Flexural)
6. Scanning Electron Microscopy
7. Conclusions
- The physical property of dune depicts that the fineness modulus of dune sand is much lower than river sand. Additionally, a poorly graded and irregular shape adversely affects the flowability of concrete.
- The sum of different chemicals such as silica, iron, lime, alumina and magnesia are greater than 70%. Therefore, it might be possible to use cementitious materials or cement ingredients during the manufacturing of cement.
- Slump decreased with the substitution of dune sand due to its physical nature (rough surface and poorly graded).
- Mechanical strength such as compressive, flexural and tensile capacity is improved to some extent. However, a higher dose or complete substitution adversely affects strength properties. The optimum dose of dune sand varies from 30 to 40%.
- Durability properties such as water absorption, density and sulfate resistance improved with dune sand, but less information is available.
8. Future Studies Recommendation
- The overall studies demonstrate that dune sand has the credibility to be used in concrete. However, the following aspects should be studied before being used in practice.
- The highest strength loss was just around 25%. Therefore, this decline was quite small and can be improved by adding fibers or other pozzolanic materials, such as fly ash and silica fume, waste glass, etc.
- Detailed investigations on durability performance should be explored.
- Dune sand as a cement ingredient in the manufacturing of cement should be explored.
- Treatment of dune sand before use, such as heat or alkaline solution, should be explored.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, J.; Zaid, O.; Siddique, M.S.; Aslam, F.; Alabduljabbar, H.; Khedher, K.M. Mechanical and durability characteristics of sustainable coconut fibers reinforced concrete with incorporation of marble powder. Mater. Res. Express 2021, 8, 075505. [Google Scholar] [CrossRef]
- Alvee, A.R.; Malinda, R.; Akbar, A.M.; Ashar, R.D.; Rahmawati, C.; Alomayri, T.; Raza, A.; Shaikh, F.U.A. Experimental study of the mechanical properties and microstructure of geopolymer paste containing nano-silica from agricultural waste and crystalline admixtures. Case Stud. Constr. Mater. 2022, 16, e00792. [Google Scholar] [CrossRef]
- Smirnova, O.M.; Menéndez Pidal de Navascués, I.; Mikhailevskii, V.R.; Kolosov, O.I.; Skolota, N.S. Sound-Absorbing Composites with Rubber Crumb from Used Tires. Appl. Sci. 2021, 11, 7347. [Google Scholar] [CrossRef]
- Horňáková, M.; Lehner, P. Analysis of Measured Parameters in Relation to the Amount of Fibre in Lightweight Red Ceramic Waste Aggregate Concrete. Mathematics 2022, 10, 229. [Google Scholar] [CrossRef]
- Althoey, F. Compressive strength reduction of cement pastes exposed to sodium chloride solutions: Secondary ettringite formation. Constr. Build. Mater. 2021, 299, 123965. [Google Scholar] [CrossRef]
- Mesci, B.; Çoruh, S.; Ergun, O.N. Use of selected industrial waste materials in concrete mixture. Environ. Prog. Sustain. Energy 2011, 30, 368–376. [Google Scholar] [CrossRef]
- ZZhu, F.; Wu, X.; Zhou, M.; Sabri, M.M.S.; Huang, J. Intelligent Design of Building Materials: Development of an AI-Based Method for Cement-Slag Concrete Design. Materials 2022, 15, 3833. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, G.; Bonavetti, V.; Irassar, E.F. Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cem. Concr. Compos. 2003, 25, 61–67. [Google Scholar] [CrossRef]
- Bessa, A. Assessing the Contribution of Mineral Additions in Cement Binding Activity in Mortars. In Proceedings of the XXIèmes Rencontres Universitaires de Génie Civil, La Rochelle, France, 2–3 June 2003; Université de Cergy-Pontoise: Cergy, France, 2003. [Google Scholar]
- Guettala, S.; Mezghiche, B. Compressive strength and hydration with age of cement pastes containing dune sand powder. Constr. Build. Mater. 2011, 25, 1263–1269. [Google Scholar] [CrossRef]
- Althoey, F.; Farnam, Y. The effect of using supplementary cementitious materials on damage development due to the formation of a chemical phase change in cementitious materials exposed to sodium chloride. Constr. Build. Mater. 2019, 210, 685–695. [Google Scholar] [CrossRef]
- Abdelgader, H.S.; Fediuk, R.S.; Kurpinska, M.; Khatib, J.; Murali, G.; Baranov, A.V.; Timokhin, R.A. Mechanical Properties of Two-Stage Concrete Modified by Silica Fume. Mag. Civ. Eng. 2019, 89, 26–38. [Google Scholar]
- Habert, G. Assessing the Environmental Impact of Conventional and “green” Cement Production. In Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies; Woodhead: Cambridge, UK, 2013; ISBN 9780857097675. [Google Scholar]
- Du, H.; Tan, K.H. Concrete with Recycled Glass as Fine Aggregates. ACI Mater. J. 2014, 111, 47–57. [Google Scholar] [CrossRef]
- Al-Zubaidi, A.B.; Al-Tabbakh, A.A. Recycling Glass Powder and Its Use as Cement Mortar Applications. Int. J. Sci. Eng. Res. 2016, 7, 555–564. [Google Scholar]
- Shekhawat, B.S.; Aggarwal, V. Utilisation of Waste Glass Powder in Concrete-A Literature Review. Int. J. Innov. Res. Sci. Eng. Technol. 2007, 3297, 2319–8753. [Google Scholar]
- Ahmad, J.; Aslam, F.; Martinez-Garcia, R.; De-Prado-Gil, J.; Qaidi, S.M.A.; Brahmia, A. Effects of Waste Glass and Waste Marble on Mechanical and Durability Performance of Concrete. Sci. Rep. 2021, 11, 21525. [Google Scholar] [CrossRef]
- Dolage, D.A.R.; Dias, M.G.S.; Ariyawansa, C.T. Offshore Sand as a Fine Aggregate for Concrete Production. Br. J. Appl. Sci. Technol. 2013, 3, 813–825. [Google Scholar] [CrossRef]
- Ahmad, J.; Martínez-García, R.; De-Prado-Gil, J.; Irshad, K.; El-Shorbagy, M.A.; Fediuk, R.; Vatin, N.I. Concrete with Partial Substitution of Waste Glass and Recycled Concrete Aggregate. Materials 2022, 15, 430. [Google Scholar] [CrossRef] [PubMed]
- Mavroulidou, M.; Lawrence, D. Can Waste Foundry Sand Fully Replace Structural Concrete Sand? J. Mater. Cycles Waste Manag. 2019, 21, 594–605. [Google Scholar] [CrossRef]
- Vigneshpandian, G.V.; Shruthi, E.A.; Venkatasubramanian, C.; Muthu, D. Utilisation of Waste Marble Dust as Fine Aggregate in Concrete. IOP Conf. Ser. Earth Environ. Sci. 2017, 80, 012007. [Google Scholar] [CrossRef]
- Idir, R.; Cyr, M.; Tagnit-Hamou, A. Use of Waste Glass as Powder and Aggregate in Cement-Based Materials. In Proceedings of the SBEIDCO—1st International Conference on Sustainable Built Environment Infrastructures in Developing Countries ENSET, Oran, Algeria, 12–14 October 2009; pp. 109–116. [Google Scholar]
- Muduli, R.; Mukharjee, B.B. Performance assessment of concrete incorporating recycled coarse aggregates and metakaolin: A systematic approach. Constr. Build. Mater. 2020, 233, 117223. [Google Scholar] [CrossRef]
- Zegardło, B. Heat-Resistant Concretes Containing Waste Carbon Fibers from the Sailing Industry and Recycled Ceramic Aggregates. Case Stud. Constr. Mater. 2022, 16, e01084. [Google Scholar] [CrossRef]
- Sambhaji, Z.K.; Autade, P.B. Effect of Copper Slag as a Fine Aggregate on Properties of Concrete. Int. Res. J. Eng. Technol. 2016, 3, 410–414. [Google Scholar]
- Kumar, B.N.S.; Suhas, R.; Shet, S.U.; Srishaila, J.M. Utilization of Iron Ore Tailings as Replacement to Fine Aggregates in Cement Concrete Pavements. Int. J. Res. Eng. Technol. 2014, 3, 369–376. [Google Scholar]
- Hama, S.M.; Hilal, N.N. Fresh Properties of Concrete Containing Plastic Aggregate. In Use of Recycled Plastics in Eco-Efficient Concrete; Elsevier: Amsterdam, The Netherlands, 2019; pp. 85–114. [Google Scholar]
- Rajput, S.P.S.; Chauhan, M.S. Suitability of Crushed Stone Dust as Fine Aggregate in Mortars. Micron (no. 30) 2014, 89, 35–59. [Google Scholar]
- Prakash, R.; Raman, S.N.; Subramanian, C.; Divyah, N. Eco-Friendly Fiber-Reinforced Concretes. In Handbook of Sustainable Concrete and Industrial Waste Management; Elsevier: Amsterdam, The Netherlands, 2022; pp. 109–145. [Google Scholar]
- Jin, B.H.; Song, J.X.; Liu, H.F. Engineering Characteristics of Concrete Made of Desert Sand from Maowusu Sandy Land. In Applied Mechanics and Materials; Trans Tech: Zurich, Switzerland, 2012; Volume 174, pp. 604–607. [Google Scholar]
- Khay, S.E.E.; Neji, J.; Loulizi, A. Compacted Dune Sand Concrete for Pavement Applications. Proc. Inst. Civ. Eng.-Constr. Mater. 2011, 164, 87–93. [Google Scholar] [CrossRef]
- Westerholm, M.; Lagerblad, B.; Silfwerbrand, J.; Forssberg, E. Influence of fine aggregate characteristics on the rheological properties of mortars. Cem. Concr. Compos. 2008, 30, 274–282. [Google Scholar] [CrossRef]
- Zaitri, R.; Bederina, M.; Bouziani, T.; Makhloufi, Z.; Hadjoudja, M. Development of high performances concrete based on the addition of grinded dune sand and limestone rock using the mixture design modelling approach. Constr. Build. Mater. 2014, 60, 8–16. [Google Scholar] [CrossRef]
- Lee, E.; Ko, J.; Yoo, J.; Park, S.; Nam, J. Effect of Dune Sand on Drying Shrinkage Cracking of Fly Ash Concrete. Appl. Sci. 2022, 12, 3128. [Google Scholar] [CrossRef]
- Wille, K.; Naaman, A.E.; El-Tawil, S.; Parra-Montesinos, G.J. Ultra-high performance concrete and fiber reinforced concrete: Achieving strength and ductility without heat curing. Mater. Struct. 2012, 45, 309–324. [Google Scholar] [CrossRef]
- Ran, Q.; Somasundaran, P.; Miao, C.; Liu, J.; Wu, S.; Shen, J. Adsorption Mechanism of Comb Polymer Dispersants at the Cement/Water Interface. J. Dispers. Sci. Technol. 2010, 31, 790–798. [Google Scholar] [CrossRef]
- Luo, F.J.; He, L.; Pan, Z.; Duan, W.H.; Zhao, X.L.; Collins, F. Effect of very fine particles on workability and strength of concrete made with dune sand. Constr. Build. Mater. 2013, 47, 131–137. [Google Scholar] [CrossRef]
- Belferrag, A.; Kriker, A.; Khenfer, M.E. Improvement of the Compressive Strength of Mortar in the Arid Climates by Valorization of Dune Sand and Pneumatic Waste Metal Fibers. Constr. Build. Mater. 2013, 40, 847–853. [Google Scholar] [CrossRef]
- Krobba, B.; Bouhicha, M.; Zaidi, A.; Lakhdari, M. Formulation of a Repair Mortar Based on Dune Sand and Natural Microfibers. In Concrete Solutions; CRC Press: Boca Raton, FL, USA, 2014; pp. 91–95. [Google Scholar]
- Dawood, A.O.; Jaber, A.M. Effect of Dune Sand as Sand Replacement on the Mechanical Properties of the Hybrid Fiber Reinforced Concrete. Civ. Environ. Eng. 2022, 18, 111–136. [Google Scholar] [CrossRef]
- Chauvin, J.J. Les Sables, Guide Technique d’utilisation Routière; Institut des Sciences et des Techniques de l’Équipement et de l’Environnement pour le Développement: Paris, France, 1987. [Google Scholar]
- Wang, W.-H.; Han, L.-H.; Li, W.; Jia, Y.-H. Behavior of concrete-filled steel tubular stub columns and beams using dune sand as part of fine aggregate. Constr. Build. Mater. 2014, 51, 352–363. [Google Scholar] [CrossRef]
- Setra, L. Guide Technique, Réalisation des Remblais et des Couches de Forme; LCPC: Paris, France, 2000. [Google Scholar]
- Reddy, B.V.; Gupta, A. Influence of sand grading on the characteristics of mortars and soil–cement block masonry. Constr. Build. Mater. 2008, 22, 1614–1623. [Google Scholar] [CrossRef]
- Abadou, Y.; Mitiche-Kettab, R.; Ghrieb, A. Ceramic waste influence on dune sand mortar performance. Constr. Build. Mater. 2016, 125, 703–713. [Google Scholar] [CrossRef]
- Kachouh, N.; El-Hassan, H.; El Maaddawy, T. Effect of steel fibers on the performance of concrete made with recycled concrete aggregates and dune sand. Constr. Build. Mater. 2019, 213, 348–359. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Jiang, G. Orthogonal experiment on performance of mortar made with dune sand. Constr. Build. Mater. 2020, 264, 120254. [Google Scholar] [CrossRef]
- Rennani, F.Z.; Makani, A.; Agha, N.; Tafraoui, A.; Benmerioul, F.; Zaoiai, S. Mechanical Properties of High-Performance Concrete Made Incorporating Dune Sand as Fine Aggregate. Rev. Rom. Ing. Civ. 2020, 11, 37–46. [Google Scholar]
- Siala, A.; Khay, S.E.E.; Loulizi, A.; Neji, J. Improving the performance of porous asphalt with reclaimed asphalt, dune sand and lime. Proc. Inst. Civ. Eng.-Constr. Mater. 2021, 174, 214–226. [Google Scholar] [CrossRef]
- Smaida, A.; Haddadi, S.; Nechnech, A. Improvement of the mechanical performance of dune sand for using in flexible pavements. Constr. Build. Mater. 2019, 208, 464–471. [Google Scholar] [CrossRef]
- El-Hassan, H.; Hussein, A.; Medljy, J.; El-Maaddawy, T. Performance of Steel Fiber-Reinforced Alkali-Activated Slag-Fly Ash Blended Concrete Incorporating Recycled Concrete Aggregates and Dune Sand. Buildings 2021, 11, 327. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Yuan, K.; Sheng, Z.; Qiu, J.; Liu, J.; Wang, J. Synergistic effects of ultrafine particles and graphene oxide on hydration mechanism and mechanical property of dune sand-incorporated cementitious composites. Constr. Build. Mater. 2020, 262, 120817. [Google Scholar] [CrossRef]
- Jiang, C.; Zhou, X.; Tao, G.; Chen, D. Experimental Study on the Performance and Microstructure of Cementitious Materials Made with Dune Sand. Adv. Mater. Sci. Eng. 2016, 2016, 2158706. [Google Scholar] [CrossRef]
- Benabed, B.; Azzouz, L.; Kadri, E.-H.; Kenai, S.; Belaidi, A.S.E. Effect of fine aggregate replacement with desert dune sand on fresh properties and strength of self-compacting mortars. J. Adhes. Sci. Technol. 2014, 28, 2182–2195. [Google Scholar] [CrossRef]
- Zhang, G.; Song, J.; Yang, J.; Liu, X. Performance of mortar and concrete made with a fine aggregate of desert sand. Build. Environ. 2006, 41, 1478–1481. [Google Scholar] [CrossRef]
- Al-Harthy, A.; Halim, M.A.; Taha, R.; Al-Jabri, K. The properties of concrete made with fine dune sand. Constr. Build. Mater. 2007, 21, 1803–1808. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, C.; Sun, W. Fly ash effects: I. The morphological effect of fly ash. Cem. Concr. Res. 2003, 33, 2023–2029. [Google Scholar] [CrossRef]
- Zeghichi, L.; Benghazi, Z.; Baali, L. Comparative Study of Self-Compacting Concrete with Manufactured and Dune Sand. J. Civ. Eng. Arch. 2012, 6, 1429–1434. [Google Scholar]
- Seif, E.; Sedek, E.S. Performance of Cement Mortar Made with Fine Aggregates of Dune Sand, Kharga Oasis, Western Desert, Egypt: An Experimental Study. Jordan J. Civ. Eng. 2013, 7, 270–284. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials; McGraw-Hill Education: New York, NY, USA, 2014; ISBN 0071797874. [Google Scholar]
- Rmili, A.; Ben Ouezdou, M.; Added, M.; Ghorbel, E. Incorporation of Crushed Sands and Tunisian Desert Sands in the Composition of Self Compacting Concretes Part II: SCC Fresh and Hardened States Characteristics. Int. J. Concr. Struct. Mater. 2009, 3, 11–14. [Google Scholar] [CrossRef]
- Bouziani, T.; Bederina, M.; Hadjoudja, M. Effect of dune sand on the properties of flowing sand-concrete (FSC). Int. J. Concr. Struct. Mater. 2012, 6, 59–64. [Google Scholar] [CrossRef]
- Rao, G. Development of strength with age of mortars containing silica fume. Cem. Concr. Res. 2001, 31, 1141–1146. [Google Scholar] [CrossRef]
- Kwan, A.K.H. Use of Condensed Silica Fume for Making High-Strength, Self-Consolidating Concrete. Can. J. Civ. Eng. 2000, 27, 620–627. [Google Scholar] [CrossRef]
- Saidi, M.; Safi, B.; Samar, M.; Benmounah, A. Formulation and Physicochemical Characterization of Ultra-High Performance Fiber Concrete Based of Sand Dunes (UHPFC). In Proceedings of the 3rd International Conference on Material Modeling incorporating the 13th European Mechanics of Materials Conference, Warsaw, Poland, 8–11 September 2013. [Google Scholar]
- Benmerioul, F.; Tafraoui, A.; Makani, A.; Zaouai, S. A Study on Mechanical Properties of Self-Compacting Concrete Made Utilizing Ground Dune Sand. Rev. Rom. Mater. J. Mater. 2017, 47, 328–335. [Google Scholar]
- Mohammed, M.; Abdelouahed, K.; Allaoua, B. Compressive Strength of Dune Sand Reinforced Concrete. AIP Conf. Proc. 2017, 1814, 020023. [Google Scholar]
- Abadou, Y.; Ghrieb, A.; Bustamante, R. Crushed concrete waste influence on dune sand mortar performance. Contribution to the valorization. Mater. Today Proc. 2020, 33, 1758–1761. [Google Scholar] [CrossRef]
- Ahmad, J.; Manan, A.; Ali, A.; Khan, M.W.; Asim, M.; Zaid, O. A Study on Mechanical and Durability Aspects of Concrete Modified with Steel Fibers (SFs). Civ. Eng. Arch. 2020, 8, 814–823. [Google Scholar] [CrossRef]
- Ahmad, J.; Aslam, F.; Martinez-Garcia, R.; El Ouni, M.H.; Khedher, K.M. Performance of sustainable self-compacting fiber reinforced concrete with substitution of marble waste (MW) and coconut fibers (CFs). Sci. Rep. 2021, 11, 23184. [Google Scholar] [CrossRef]
- Li, Z.; Yang, S.; Luo, Y. Experimental evaluation of the effort of dune sand replacement levels on flexural behaviour of reinforced beam. J. Asian Arch. Build. Eng. 2020, 19, 480–489. [Google Scholar] [CrossRef]
- Ahmad, J.; Aslam, F.; Zaid, O.; Alyousef, R.; Alabduljabbar, H. Mechanical and durability characteristics of sustainable concrete modified with partial substitution of waste foundry sand. Struct. Concr. 2021, 22, 2775–2790. [Google Scholar] [CrossRef]
- Azzouz, L.; Benabed, B.; Belaidi, A.S.E.; Menadi, B. Physical, Mechanical and Durability of Dunes Sand Mortar in The Region of Laghouat–Algeria. 2008. Available online: https://www.thbbakademi.org/wp-content/uploads/2020/12/B2008.012-1.pdf (accessed on 22 June 2022).
- Al-Dulaijan, S.; Maslehuddin, M.; Al-Zahrani, M.; Sharif, A.; Shameem, M.; Ibrahim, M. Sulfate resistance of plain and blended cements exposed to varying concentrations of sodium sulfate. Cem. Concr. Compos. 2003, 25, 429–437. [Google Scholar] [CrossRef]
Authors | [45] | [46] | [47] | [48] | [49] |
---|---|---|---|---|---|
Dry-rodded density kg/m3 | - | 1663 | - | - | - |
Water Absorption (%) | - | - | 3.84 | - | - |
Fineness Modulus | 1.07 | 1.45 | 1.44 | - | 0.65 |
Sand equivalency (%) | 87% | - | - | - | 69% |
Bulk density (kg/m3) | 2525 | - | 1560 | - | - |
Specific Gravity | - | 2.77 | - | - | 2.64 |
Surface area cm2/g | - | 116.8 | - | 3000 | - |
Apparent specific gravity (kg/m3) | 1434 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, J.; Majdi, A.; Deifalla, A.F.; Qureshi, H.J.; Saleem, M.U.; Qaidi, S.M.A.; El-Shorbagy, M.A. Concrete Made with Dune Sand: Overview of Fresh, Mechanical and Durability Properties. Materials 2022, 15, 6152. https://doi.org/10.3390/ma15176152
Ahmad J, Majdi A, Deifalla AF, Qureshi HJ, Saleem MU, Qaidi SMA, El-Shorbagy MA. Concrete Made with Dune Sand: Overview of Fresh, Mechanical and Durability Properties. Materials. 2022; 15(17):6152. https://doi.org/10.3390/ma15176152
Chicago/Turabian StyleAhmad, Jawad, Ali Majdi, Ahmed Farouk Deifalla, Hisham Jahangir Qureshi, Muhammad Umair Saleem, Shaker M. A. Qaidi, and Mohammed A. El-Shorbagy. 2022. "Concrete Made with Dune Sand: Overview of Fresh, Mechanical and Durability Properties" Materials 15, no. 17: 6152. https://doi.org/10.3390/ma15176152
APA StyleAhmad, J., Majdi, A., Deifalla, A. F., Qureshi, H. J., Saleem, M. U., Qaidi, S. M. A., & El-Shorbagy, M. A. (2022). Concrete Made with Dune Sand: Overview of Fresh, Mechanical and Durability Properties. Materials, 15(17), 6152. https://doi.org/10.3390/ma15176152