Direct Observation of the Spin Exciton in Andreev Spectroscopy of Iron-Based Superconductors
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazin, I.I.; Singh, D.J.; Johannes, M.D.; Du, M.H. Unconventional Superconductivity with a Sign Reversal in the Order Parameter of LaFeAsO1-xFx. Phys. Rev. Lett. 2008, 101, 057003. [Google Scholar] [CrossRef] [PubMed]
- Tsuei, C.C.; Kirtley, J.R.; Ren, Z.F.; Wang, J.H.; Raffy, H.; Li, Z.Z. Pure dx2-y2 order-parameter symmetry in the tetragonal superconductor Ti2Ba2CuO6+δ. Nature 1997, 387, 481–483. [Google Scholar] [CrossRef]
- Korshunov, M.M.; Eremin, I. Theory of magnetic excitations in iron-based layered superconductors. Phys. Rev. B 2008, 78, 140509. [Google Scholar] [CrossRef]
- Maier, T.A.; Scalapino, D.J. Theory of neutron scattering as a probe of the superconducting gap in the iron pnictides. Phys. Rev. B 2008, 78, 020514. [Google Scholar] [CrossRef]
- Lumsden, M.D.; Christianson, A.D. Magnetism in Fe-based superconductors. J. Phys. Condens. Matter 2010, 22, 203203. [Google Scholar] [CrossRef]
- Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 2015, 87, 855–896. [Google Scholar] [CrossRef]
- Inosov, D.S. Spin fluctuations in iron pnictides and chalcogenides: From antiferromagnetism to superconductivity. Comptes Rendus Phys. 2016, 17, 60–89. [Google Scholar] [CrossRef]
- Khlybov, E.P.; Omelyanovsky, O.E.; Zaleski, A.; Sadakov, A.V.; Gizatulin, D.R.; Kulikova, L.F.; Kostuleva, I.E.; Pudalov, V.M. Magnetic and superconducting properties of FeAs-based high-Tc superconductors with Gd. JETP Lett. 2009, 90, 387–390. [Google Scholar] [CrossRef]
- Octavio, M.; Tinkham, M.; Blonder, G.E.; Klapwijk, T.M. Subharmonic energy-gap structure in superconducting constrictions. Phys. Rev. B 1983, 27, 6739–6746. [Google Scholar] [CrossRef]
- Averin, D.; Bardas, A. Ac Josephson Effect in a Single Quantum Channel. Phys. Rev. Lett. 1995, 75, 1831–1834. [Google Scholar] [CrossRef]
- Kümmel, R.; Gunsenheimer, U.; Nicolsky, R. Andreev scattering of quasiparticle wave packets and current-voltage characteristics of superconducting metallic weak links. Phys. Rev. B 1990, 42, 3992–4009. [Google Scholar] [CrossRef] [PubMed]
- Gunsenheimer, U.; Zaikin, A.D. Ballistic charge transport in superconducting weak links. Phys. Rev. B 1994, 50, 6317–6331. [Google Scholar] [CrossRef] [PubMed]
- Moreland, J.; Ekin, J.W. Electron tunneling experiments using Nb-Sn “break” junctions. J. Appl. Phys. 1985, 58, 3888–3895. [Google Scholar] [CrossRef]
- Kuzmichev, S.A.; Kuzmicheva, T.E. “Break-junction” technique in application to layered superconductors (Review Article). Low Temp. Phys. 2016, 42, 1008–1027. [Google Scholar] [CrossRef]
- Zimmermann, U.; Keck, K. Multiple Andreev-reflection in superconducting weak-links in the interaction with external microwave-fields. Z. Phys. B Condens. Matter 1996, 101, 555–560. [Google Scholar] [CrossRef]
- Kuzmicheva, T.E.; Kuzmichev, S.A.; Mikheev, M.G.; Ponomarev, Y.G.; Tchesnokov, S.N.; Eltsev, Y.F.; Pudalov, V.M.; Pervakov, K.S.; Sadakov, A.V.; Usoltsev, A.S.; et al. Experimental study of the intrinsic multiple Andreev reflections effect in GdO(F)FeAs superconductor array junctions. EPL (Europhys. Lett.) 2013, 102, 67006. [Google Scholar] [CrossRef][Green Version]
- Kuzmicheva, T.E.; Kuzmichev, S.A.; Mikheev, M.G.; Ponomarev, Y.G.; Tchesnokov, S.N.; Pudalov, V.M.; Khlybov, E.P.; Zhigadlo, N.D. Andreev spectroscopy of iron-based superconductors: Temperature dependence of the order parameters and scaling of ΔL, ΔS with TC. Phys.-Usp. 2014, 57, 819–827. [Google Scholar] [CrossRef]
- Kuzmicheva, T.E.; Kuzmichev, S.A.; Pervakov, K.S.; Pudalov, V.M.; Zhigadlo, N.D. Evolution of superconducting gaps in Th-substituted Sm1-xThxOFeAs studied by multiple Andreev reflection spectroscopy. Phys. Rev. B 2017, 95, 094507. [Google Scholar] [CrossRef]
- Daghero, D.; Piatti, E.; Zhigadlo, N.D.; Ummarino, G.A.; Barbero, N.; Shiroka, T. Superconductivity of underdoped PrFeAs(O,F) investigated via point-contact spectroscopy and nuclear magnetic resonance. Phys. Rev. B 2020, 102, 104513. [Google Scholar] [CrossRef]
- Kuzmichev, S.A.; Kuzmicheva, T.E. Observation of bosonic resonances in GdO1-xFxFeAs by intrinsic multiple Andreev reflection effect spectroscopy. JETP Lett. 2017, 105, 671–676. [Google Scholar] [CrossRef]
- Kuzmichev, S.A.; Kuzmicheva, T.E.; Zhigadlo, N.D. Evidence of a multiple boson emission in Sm1-xThxOFeAs. EPL (Europhys. Lett.) 2017, 119, 17007. [Google Scholar] [CrossRef][Green Version]
- Johnston, D.C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 2010, 59, 803–1061. [Google Scholar] [CrossRef]
- Si, Q.; Yu, R.; Abrahams, E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mater. 2016, 1, 16017. [Google Scholar] [CrossRef]
- Zhao, S.C.; Hou, D.; Wu, Y.; Xia, T.L.; Zhang, A.M.; Chen, G.F.; Luo, J.L.; Wang, N.L.; Wei, J.H.; Lu, Z.Y.; et al. Raman spectra in iron-based quaternary CeO1-xFxFeAs and LaO1-xFxFeAs. Supercond. Sci. Technol. 2008, 22, 015017. [Google Scholar] [CrossRef][Green Version]
- Le Tacon, M.; Krisch, M.; Bosak, A.; Bos, J.W.G.; Margadonna, S. Phonon density of states in NdFeAsO1-xFx. Phys. Rev. B 2008, 78, 140505. [Google Scholar] [CrossRef]
- Christianson, A.D.; Lumsden, M.D.; Delaire, O.; Stone, M.B.; Abernathy, D.L.; McGuire, M.A.; Sefat, A.S.; Jin, R.; Sales, B.C.; Mandrus, D.; et al. Phonon Density of States of LaFeAsO1-xFx. Phys. Rev. Lett. 2008, 101, 157004. [Google Scholar] [CrossRef]
- Marini, C.; Mirri, C.; Profeta, G.; Lupi, S.; Castro, D.D.; Sopracase, R.; Postorino, P.; Calvani, P.; Perucchi, A.; Massidda, S.; et al. The optical phonon spectrum of SmFeAsO. EPL (Europhys. Lett.) 2008, 84, 67013. [Google Scholar] [CrossRef]
- Ponomarev, Y.; Kuzmichev, S.; Mikheev, M.; Sudakova, M.; Tchesnokov, S.; Timergaleev, N.; Yarigin, A.; Maksimov, E.; Krasnosvobodtsev, S.; Varlashkin, A.; et al. Evidence for a two-band behavior of MgB2 from point-contact and tunneling spectroscopy. Solid State Commun. 2004, 129, 85–89. [Google Scholar] [CrossRef]
- Ponomarev, Y.G.; Kuzmichev, S.A.; Mikheev, M.G.; Sudakova, M.V.; Tchesnokov, S.N.; Van Hoai, H.; Bulychev, B.M.; Maksimov, E.G.; Krasnosvobodtsev, S.I. Leggett’s mode in Mg1-xAlxB2. JETP Lett. 2007, 85, 46–50. [Google Scholar] [CrossRef]
- Leggett, A.J. Number-Phase Fluctuations in Two-Band Superconductors. Prog. Theor. Phys. 1966, 36, 901–930. [Google Scholar] [CrossRef]
- Burnell, F.J.; Hu, J.; Parish, M.M.; Bernevig, B.A. Leggett mode in a strong-coupling model of iron arsenide superconductors. Phys. Rev. B 2010, 82, 144506. [Google Scholar] [CrossRef]
- Ota, Y.; Machida, M.; Koyama, T. Variety of c-Axis Collective Excitations in Layered Multigap Superconductors. Phys. Rev. Lett. 2011, 106, 157001. [Google Scholar] [CrossRef] [PubMed]
- Chubukov, A.V.; Efremov, D.V.; Eremin, I. Magnetism, superconductivity, and pairing symmetry in iron-based superconductors. Phys. Rev. B 2008, 78, 134512. [Google Scholar] [CrossRef]
- Cvetkovic, V.; Tesanovic, Z. Valley density-wave and multiband superconductivity in iron-based pnictide superconductors. Phys. Rev. B 2009, 80, 024512. [Google Scholar] [CrossRef]
- Chubukov, A. Renormalization group analysis of competing orders and the pairing symmetry in Fe-based superconductors. Phys. C Supercond. 2009, 469, 640–650. [Google Scholar] [CrossRef]
- Maiti, S.; Chubukov, A. Renormalization group flow, competing phases, and the structure of superconducting gap in multiband models of iron-based superconductors. Phys. Rev. B 2010, 82, 214515. [Google Scholar] [CrossRef]
- Thomale, R.; Platt, C.; Hu, J.; Honerkamp, C.; Bernevig, B.A. Functional renormalization-group study of the doping dependence of pairing symmetry in the iron pnictide superconductors. Phys. Rev. B 2009, 80, 180505. [Google Scholar] [CrossRef]
- Wang, F.; Zhai, H.; Lee, D.H. Nodes in the gap function of LaFePO, the gap function of the Fe(Se,Te) systems, and the STM signature of the s± pairing. Phys. Rev. B 2010, 81, 184512. [Google Scholar] [CrossRef]
- Wang, F.; Yang, F.; Gao, M.; Lu, Z.Y.; Xiang, T.; Lee, D.H. The electron pairing of KxFe2-ySe2. EPL (Europhys. Lett.) 2011, 93, 57003. [Google Scholar] [CrossRef]
- Thomale, R.; Platt, C.; Hanke, W.; Bernevig, B.A. Mechanism for Explaining Differences in the Order Parameters of FeAs-Based and FeP-Based Pnictide Superconductors. Phys. Rev. Lett. 2011, 106, 187003. [Google Scholar] [CrossRef]
- Classen, L.; Xing, R.Q.; Khodas, M.; Chubukov, A.V. Interplay between Magnetism, Superconductivity, and Orbital Order in 5-Pocket Model for Iron-Based Superconductors: Parquet Renormalization Group Study. Phys. Rev. Lett. 2017, 118, 037001. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.P.; Haule, K.; Kotliar, G. Spin dynamics and orbital-antiphase pairing symmetry in iron-based superconductors. Nat. Phys. 2014, 10, 845–850. [Google Scholar] [CrossRef]
- Maiti, S.; Korshunov, M.M.; Maier, T.A.; Hirschfeld, P.J.; Chubukov, A.V. Evolution of the Superconducting State of Fe-Based Compounds with Doping. Phys. Rev. Lett. 2011, 107, 147002. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Korshunov, M.M.; Maier, T.A.; Hirschfeld, P.J.; Chubukov, A.V. Evolution of symmetry and structure of the gap in iron-based superconductors with doping and interactions. Phys. Rev. B 2011, 84, 224505. [Google Scholar] [CrossRef]
- Korshunov, M.M. Superconducting state in iron-based materials and spin-fluctuation pairing theory. Physics-Uspekhi 2014, 57, 813–819. [Google Scholar] [CrossRef]
- Boeri, L.; Dolgov, O.V.; Golubov, A.A. Is LaFeAsO1-xFx an Electron-Phonon Superconductor? Phys. Rev. Lett. 2008, 101, 026403. [Google Scholar] [CrossRef] [PubMed]
- Hirschfeld, P.J.; Korshunov, M.M.; Mazin, I.I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 2011, 74, 124508. [Google Scholar] [CrossRef]
- Graser, S.; Maier, T.; Hirschfeld, P.; Scalapino, D. Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides. New J. Phys. 2009, 11, 025016. [Google Scholar] [CrossRef]
- Korshunov, M.M. Effect of gap anisotropy on the spin resonance peak in the superconducting state of iron-based materials. Phys. Rev. B 2018, 98, 104510. [Google Scholar] [CrossRef]
- Aminov, B.A.; Golubov, A.A.; Kupriyanov, M.Y. Quasiparticle current in ballistic constrictions with finite transparencies of interfaces. Phys. Rev. B 1996, 53, 365–373. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korshunov, M.M.; Kuzmichev, S.A.; Kuzmicheva, T.E. Direct Observation of the Spin Exciton in Andreev Spectroscopy of Iron-Based Superconductors. Materials 2022, 15, 6120. https://doi.org/10.3390/ma15176120
Korshunov MM, Kuzmichev SA, Kuzmicheva TE. Direct Observation of the Spin Exciton in Andreev Spectroscopy of Iron-Based Superconductors. Materials. 2022; 15(17):6120. https://doi.org/10.3390/ma15176120
Chicago/Turabian StyleKorshunov, Maxim M., Svetoslav A. Kuzmichev, and Tatiana E. Kuzmicheva. 2022. "Direct Observation of the Spin Exciton in Andreev Spectroscopy of Iron-Based Superconductors" Materials 15, no. 17: 6120. https://doi.org/10.3390/ma15176120
APA StyleKorshunov, M. M., Kuzmichev, S. A., & Kuzmicheva, T. E. (2022). Direct Observation of the Spin Exciton in Andreev Spectroscopy of Iron-Based Superconductors. Materials, 15(17), 6120. https://doi.org/10.3390/ma15176120