A Novel Physical Mechanism to Model Brownian Yet Non-Gaussian Diffusion: Theory and Application
Abstract
:1. Introduction
2. Mathematical Model of Two Interacting Phase-Separated Clusters
3. Initial Theoretical and Experimental Considerations
4. Application of the Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Symbol | Description |
---|---|
time scale in which the gaseouslike state of the fluid relaxes towards equilibrium, equilibrium time scale (experimental scale), universal variable for time (s) | |
dispersion energy. Depth of Lennard-Jones potential well (J) | |
Van der Waals radius (m) | |
distance between a molecule of the Brownian particle and fluid molecule (m) | |
classically measured distance between the center of a Brownian particle and fluid molecule, classically measured distance between the spherical interface of a Brownian particle and the center of a different Brownian particle, distance as measured from the center of a Brownian particle and the interface of a different Brownian particle (mean radial relative distance, m) | |
R | radius of particle being diffused (m) |
z | distance as measured from the interface of Brownian particle (m) |
Attractive term of 6-12 Lennard-Jones potential energy acting between two molecules (J) | |
cubic part of a 3-9 Lennard-Jones potential energy (J) | |
number density of the fluid at the spherical interface of Brownian particle ( | |
number density of the fluid in the gel-like phase (m) | |
density profile of the fluid in the gaseouslike phase (m) | |
Boltzmann constant and temperature of the system () (K) | |
number density profile of the fluid measured with respect to (m) | |
number density of the fluid at the spherical interface of a Brownian particle measured with respect to (m) | |
N | number of fluid molecules inside a cluster (nondimensional) |
V | cylindrical volume enclosed by the cross-section of the cluster, with height (m) |
Z | compressibility factor, measures deviation from ideal gas law in the fluid (nondimensional) |
Symbol | Description |
---|---|
modified number of fluid molecules (considers fluid molecules interactions) from one side of the cross-section of the cluster (nondimensional) | |
modified number of fluid molecules (considers fluid molecules interactions) from opposite side of the cross-section of the cluster (nondimensional) | |
number density of the fluid/gradient of number of fluid molecules in the radial direction (m) | |
gradient of modified number of fluid molecules in the radial direction (considers fluid molecules interactions) (m) | |
radial relative distance between two clusters, radial distance/distance as measured from origin (laboratory frame), radial relative displacement, displacement as measured from origin. All of them random variables (m) | |
magnitude of interaction force between two clusters of molecules, vector form of the interaction between two clusters of molecules (N) | |
white Gaussian noise (N) | |
m | mass of the Brownian particle (kg) |
resistive constant ( s× m) | |
shear viscosity of the fluid at equilibrium (in both phases) (P) | |
D | diffusivity of the fluid at equilibrium (m s) |
initial position of diffusing particles (m) | |
denotes probability density functions and/or propagators (nondimensional) | |
reduced diffusivity due to molecular interactions in the phase-separated fluid. (m s) | |
potential energy acting on the clusters ensemble at equilibrium (J) | |
compressibility factor in the gel-like phase, compressibility factor in the gaseouslike phase of the phase-separated fluid. (non-dimensional) | |
modified diffusivity in the gel-like phase due to fluid molecules interactions, modified diffusivity in the gaseous-like state due to fluid molecules interactions. (m s | |
probability density function for the gaseouslike state (nondimensional) | |
probability density function for the gel-like state (nondimensional) | |
experimentally measured critical time at which changes towards (s) | |
experimentally measured critical mean radial distance changes towards (m) | |
time measured with respect to (s) | |
extensional viscosity (P) | |
average of and (m s | |
mean squared displacement for the whole process (m) | |
x | 1D experimental displacement of a diffusing bead (m) |
d | diameter of diffusing bead (m) |
References
- Koo, P.K.; Mochrie, S.G. Systems-level approach to uncovering diffusive states and their transitions from single-particle trajectories. Phys. Rev. E 2016, 94, 52412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillespie, D.T.; Seitaridou, E. Simple Brownian Diffusion: An Introduction to the Standard Theoretical Models; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat; Basic Books: New York, NY, USA, 2011; Volume 1. [Google Scholar]
- Liu, D.L. Particle deposition onto enclosure surfaces. In Developments in Surface Contamination and Cleaning; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–56. [Google Scholar]
- Malỳ, P.; Lüttig, J.; Turkin, A.; Dostál, J.; Lambert, C.; Brixner, T. From wavelike to sub-diffusive motion: Exciton dynamics and interaction in squaraine copolymers of varying length. Chem. Sci. 2020, 11, 456–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sposini, V.; Metzler, R.; Oshanin, G. Single-trajectory spectral analysis of scaled Brownian motion. New J. Phys. 2019, 21, 73043. [Google Scholar] [CrossRef]
- Narumi, T.; Hidaka, Y. Slow diffusive structure in Nikolaevskii turbulence. Phys. Rev. E 2020, 101, 22202. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Kumar, H.; Dasgupta, C.; Maiti, P.K. Confined water: Structure, dynamics, and thermodynamics. Accounts Chem. Res. 2017, 50, 2139–2146. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, K.; Sano, T.G.; Cairoli, A.; Baule, A. Loopy Lévy flights enhance tracer diffusion in active suspensions. Nature 2020, 579, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, H.; Ferreira, W.; Potiguar, F.Q. Trapping and sorting of active matter in a periodic background potential. Phys. Rev. E 2020, 101, 32126. [Google Scholar] [CrossRef]
- Hanasaki, I.; Shoji, T.; Tsuboi, Y. Regular assembly of polymer nanoparticles by optical trapping enhanced with a random array of Si needles for reconfigurable photonic crystals in liquid. ACS Appl. Nano Mater. 2019, 2, 7637–7643. [Google Scholar] [CrossRef]
- Rudnizky, S.; Khamis, H.; Malik, O.; Melamed, P.; Kaplan, A. The base pair-scale diffusion of nucleosomes modulates binding of transcription factors. Proc. Natl. Acad. Sci. USA 2019, 116, 12161–12166. [Google Scholar] [CrossRef] [Green Version]
- El-Zant, A.A.; Freundlich, J.; Combes, F.; Halle, A. The effect of fluctuating fuzzy axion haloes on stellar dynamics: A stochastic model. Mon. Not. R. Astron. Soc. 2020, 492, 877–894. [Google Scholar] [CrossRef]
- Cincotta, P.M.; Giordano, C.M.; Marti, J.G.; Beauge, C. On the chaotic diffusion in multidimensional Hamiltonian systems. Celest. Mech. Dyn. Astron. 2018, 130, 1–23. [Google Scholar] [CrossRef]
- Wang, B.; Anthony, S.M.; Bae, S.C.; Granick, S. Anomalous yet brownian. Proc. Natl. Acad. Sci. USA 2009, 106, 15160–15164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chubynsky, M.V.; Slater, G.W. Diffusing diffusivity: A model for anomalous, yet Brownian, diffusion. Phys. Rev. Lett. 2014, 113, 98302. [Google Scholar] [CrossRef] [Green Version]
- Chechkin, A.V.; Seno, F.; Metzler, R.; Sokolov, I.M. Brownian yet non-Gaussian diffusion: From superstatistics to subordination of diffusing diffusivities. Phys. Rev. X 2017, 7, 21002. [Google Scholar] [CrossRef] [Green Version]
- Nygård, K. Local structure and density fluctuations in confined fluids. Curr. Opin. Colloid Interface Sci. 2016, 22, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Kuo, J.; Bae, S.C.; Granick, S. When Brownian diffusion is not Gaussian. Nat. Mater. 2012, 11, 481–485. [Google Scholar] [CrossRef]
- Ślęzak, J.; Burov, S. From diffusion in compartmentalized media to non-Gaussian random walks. Sci. Rep. 2021, 11, 1–18. [Google Scholar]
- Białas, K.; Łuczka, J.; Hänggi, P.; Spiechowicz, J. Colossal Brownian yet non-Gaussian diffusion induced by nonequilibrium noise. Phys. Rev. E 2020, 102, 42121. [Google Scholar] [CrossRef]
- Sposini, V.; Chechkin, A.V.; Seno, F.; Pagnini, G.; Metzler, R. Random diffusivity from stochastic equations: Comparison of two models for Brownian yet non-Gaussian diffusion. New J. Phys. 2018, 20, 43044. [Google Scholar] [CrossRef]
- Yin, Q.; Li, Y.; Marchesoni, F.; Nayak, S.; Ghosh, P.K. Non-Gaussian normal diffusion in low dimensional systems. Front. Phys. 2021, 16, 1–14. [Google Scholar] [CrossRef]
- Luo, L.; Yi, M. Non-Gaussian diffusion in static disordered media. Phys. Rev. E 2018, 97, 42122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidalgo-Soria, M.; Barkai, E. Hitchhiker model for Laplace diffusion processes. Phys. Rev. E 2020, 102, 12109. [Google Scholar] [CrossRef] [PubMed]
- Toyota, T.; Head, D.A.; Schmidt, C.F.; Mizuno, D. Non-Gaussian athermal fluctuations in active gels. Soft Matter 2011, 7, 3234–3239. [Google Scholar] [CrossRef] [Green Version]
- Weeks, E.R.; Crocker, J.C.; Levitt, A.C.; Schofield, A.; Weitz, D.A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 2000, 287, 627–631. [Google Scholar] [CrossRef] [Green Version]
- Eaves, J.D.; Reichman, D.R. Spatial dimension and the dynamics of supercooled liquids. Proc. Natl. Acad. Sci. USA 2009, 106, 15171–15175. [Google Scholar] [CrossRef] [Green Version]
- Sahli, L.; Renard, D.; Solé-Jamault, V.; Giuliani, A.; Boire, A. Role of protein conformation and weak interactions on γ-gliadin liquid-liquid phase separation. Sci. Rep. 2019, 9, 13391. [Google Scholar]
- Alberti, S.; Gladfelter, A.; Mittag, T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 2019, 176, 419–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Gennes, P.G. Some effects of long range forces on interfacial phenomena. J. Phys. Lett. 1981, 42, 377–379. [Google Scholar] [CrossRef]
- Hernández, E. MW Cole y M. Boninsegni. Phys. Rev. B 2003, 68, 1254181. [Google Scholar]
- Wilhelm, E.; Letcher, T. Volume Properties: Liquids, Solutions and Vapours; Royal Society of Chemistry: London, UK, 2014. [Google Scholar]
- Atkins, P.; De Paula, J. Physical Chemistry for the Life Sciences; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Chang, R. Physical Chemistry for the Biosciences; University Science Books: Sausalito, CA, USA, 2005. [Google Scholar]
- Vamoş, C.u.u.; Crăciun, M. Separation of components from a scale mixture of Gaussian white noises. Phys. Rev. E 2010, 81, 51125. [Google Scholar] [CrossRef] [Green Version]
- De Gennes, P.G. Brownian motion with dry friction. J. Stat. Phys. 2005, 119, 953–962. [Google Scholar] [CrossRef]
- Touchette, H.; Van der Straeten, E.; Just, W. Brownian motion with dry friction: Fokker–Planck approach. J. Phys. A Math. Theor. 2010, 43, 445002. [Google Scholar] [CrossRef] [Green Version]
- Kawarada, A.; Hayakawa, H. Non-Gaussian velocity distribution function in a vibrating granular bed. J. Phys. Soc. Jpn. 2004, 73, 2037–2040. [Google Scholar] [CrossRef] [Green Version]
- Murayama, Y.; Sano, M. Transition from Gaussian to non-Gaussian velocity distribution functions in a vibrated granular bed. J. Phys. Soc. Jpn. 1998, 67, 1826–1829. [Google Scholar] [CrossRef]
- Bian, X.; Kim, C.; Karniadakis, G.E. 111 years of Brownian motion. Soft Matter 2016, 12, 6331–6346. [Google Scholar] [CrossRef] [Green Version]
- Marrink, S. Berger O, Tieleman P, Jahnig F. Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations. Biophys. J. 1998, 74, 931–943. [Google Scholar] [CrossRef] [Green Version]
- Petrie, C.J. Extensional viscosity: A critical discussion. J. Non-Newton. Fluid Mech. 2006, 137, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Mezger, T. The rheology handbook. In The Rheology Handbook; Vincentz Network: Hannover, Germany, 2020. [Google Scholar]
- Chiang, Y.W.; Shimoyama, Y.; Feigenson, G.W.; Freed, J.H. Dynamic molecular structure of DPPC-DLPC-cholesterol ternary lipid system by spin-label electron spin resonance. Biophys. J. 2004, 87, 2483–2496. [Google Scholar] [CrossRef] [Green Version]
- Straube, A.V.; Kowalik, B.G.; Netz, R.R.; Höfling, F. Rapid onset of molecular friction in liquids bridging between the atomistic and hydrodynamic pictures. Commun. Phys. 2020, 3, 1–11. [Google Scholar] [CrossRef]
- Stephan, S.; Thol, M.; Vrabec, J.; Hasse, H. Thermophysical properties of the Lennard-Jones fluid: Database and data assessment. J. Chem. Inf. Model. 2019, 59, 4248–4265. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alban-Chacón, F.E.; Lamilla-Rubio, E.A.; Alvarez-Alvarado, M.S. A Novel Physical Mechanism to Model Brownian Yet Non-Gaussian Diffusion: Theory and Application. Materials 2022, 15, 5808. https://doi.org/10.3390/ma15175808
Alban-Chacón FE, Lamilla-Rubio EA, Alvarez-Alvarado MS. A Novel Physical Mechanism to Model Brownian Yet Non-Gaussian Diffusion: Theory and Application. Materials. 2022; 15(17):5808. https://doi.org/10.3390/ma15175808
Chicago/Turabian StyleAlban-Chacón, Francisco E., Erick A. Lamilla-Rubio, and Manuel S. Alvarez-Alvarado. 2022. "A Novel Physical Mechanism to Model Brownian Yet Non-Gaussian Diffusion: Theory and Application" Materials 15, no. 17: 5808. https://doi.org/10.3390/ma15175808
APA StyleAlban-Chacón, F. E., Lamilla-Rubio, E. A., & Alvarez-Alvarado, M. S. (2022). A Novel Physical Mechanism to Model Brownian Yet Non-Gaussian Diffusion: Theory and Application. Materials, 15(17), 5808. https://doi.org/10.3390/ma15175808