Single-Mode Lasing in Polymer Circular Gratings
Abstract
1. Introduction
2. Fabrication Methods and Materials
3. Experiment Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van der Ziel, J.; Tsang, W.; Logan, R.; Mikulyak, R.; Augustyniak, W. Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers. Appl. Phys. Lett. 1981, 39, 525–527. [Google Scholar] [CrossRef]
- San Miguel, M.; Feng, Q.; Moloney, J.V. Light-polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A 1995, 52, 1728. [Google Scholar] [CrossRef]
- Tessler, N.; Denton, G.; Friend, R. Lasing from conjugated-polymer microcavities. Nature 1996, 382, 695–697. [Google Scholar] [CrossRef]
- Khairutdinov, R.; Serpone, N. Photophysics of cyanine dyes: Subnanosecond relaxation dynamics in monomers, dimers, and H-and J-aggregates in solution. J. Phys. Chem. B 1997, 101, 2602–2610. [Google Scholar] [CrossRef]
- Zhai, T.; Zhou, Y.; Chen, S.; Wang, Z.; Shi, J.; Liu, D.; Zhang, X. Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles. Phys. Rev. A 2010, 82, 023824. [Google Scholar] [CrossRef]
- Yap, B.K.; Xia, R.; Campoy-Quiles, M.; Stavrinou, P.N.; Bradley, D.D. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nat. Mater. 2008, 7, 376–380. [Google Scholar] [CrossRef]
- Kan, S.C.; Vassilovski, D.; Wu, T.C.; Lau, K.Y. Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers. Appl. Phys. Lett. 1993, 62, 2307–2309. [Google Scholar] [CrossRef]
- Rong, K.; Sun, C.; Shi, K.; Gong, Q.; Chen, J. Room-temperature planar lasers based on water-dripping microplates of colloidal quantum dots. ACS Photon. 2017, 4, 1776–1784. [Google Scholar] [CrossRef]
- Veldhuis, S.A.; Boix, P.P.; Yantara, N.; Li, M.; Sum, T.C.; Mathews, N.; Mhaisalkar, S.G. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 2016, 28, 6804–6834. [Google Scholar] [CrossRef]
- Turnbull, G.; Andrew, P.; Barnes, W.L.; Samuel, I. Photonic mode dispersion of a two-dimensional distributed feedback polymer laser. Phys. Rev. B 2003, 67, 165107. [Google Scholar] [CrossRef]
- Reufer, M.; Riechel, S.; Lupton, J.; Feldmann, J.; Lemmer, U.; Schneider, D.; Benstem, T.; Dobbertin, T.; Kowalsky, W.; Gombert, A. Low-threshold polymeric distributed feedback lasers with metallic contacts. Appl. Phys. Lett. 2004, 84, 3262–3264. [Google Scholar] [CrossRef]
- Virgili, T.; Lidzey, D.; Grell, M.; Bradley, D.; Stagira, S.; Zavelani-Rossi, M.; De Silvestri, S. Influence of the orientation of liquid crystalline poly (9, 9-dioctylfluorene) on its lasing properties in a planar microcavity. Appl. Phys. Lett. 2002, 80, 4088–4090. [Google Scholar] [CrossRef]
- Giovanella, U.; Betti, P.; Bolognesi, A.; Destri, S.; Melucci, M.; Pasini, M.; Porzio, W.; Botta, C. Core-type polyfluorene-based copolymers for low-cost light-emitting technologies. Org. Electron. 2010, 11, 2012–2018. [Google Scholar] [CrossRef]
- Kozlov, V.; Parthasarathy, G.; Burrows, P.E.; Khalfin, V.; Wang, J.; Chou, S.; Forrest, S. Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations. IEEE J. Quantum Electron. 2000, 36, 18–26. [Google Scholar] [CrossRef]
- Scherf, U.; Riechel, S.; Lemmer, U.; Mahrt, R. Conjugated polymers: Lasing and stimulated emission. Curr. Opin. Solid State Mater. Sci. 2001, 5, 143–154. [Google Scholar] [CrossRef]
- Kawabe, Y.; Spiegelberg, C.; Schülzgen, A.; Nabor, M.; Kippelen, B.; Mash, E.; Allemand, P.; Kuwata-Gonokami, M.; Takeda, K.; Peyghambarian, N. Whispering-gallery-mode microring laser using a conjugated polymer. Appl. Phys. Lett. 1998, 72, 141–143. [Google Scholar] [CrossRef]
- Kushida, S.; Okada, D.; Sasaki, F.; Lin, Z.H.; Huang, J.S.; Yamamoto, Y. Low-threshold whispering gallery mode lasing from self-assembled microspheres of single-sort conjugated polymers. Adv. Opt. Mater. 2017, 5, 1700123. [Google Scholar] [CrossRef]
- Sun, S.; Murray, C. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 1999, 85, 4325–4330. [Google Scholar] [CrossRef]
- Zhai, T.; Cao, F.; Chu, S.; Gong, Q.; Zhang, X. Continuously tunable distributed feedback polymer laser. Opt. Express 2018, 26, 4491–4497. [Google Scholar] [CrossRef]
- Cao, F.; Niu, L.; Tong, J.; Li, S.; Hayat, A.; Wang, M.; Zhai, T.; Zhang, X. Hybrid lasing in a plasmonic cavity. Opt. Express 2018, 26, 13383–13389. [Google Scholar] [CrossRef]
- Tsutsumi, N.; Kawahira, T.; Sakai, W. Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices. Appl. Phys. Lett. 2003, 83, 2533–2535. [Google Scholar] [CrossRef]
- Karl, M.; Glackin, J.M.; Schubert, M.; Kronenberg, N.M.; Turnbull, G.A.; Samuel, I.D.; Gather, M.C. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun. 2018, 9, 1525. [Google Scholar] [CrossRef]
- Hayat, A.; Tong, J.; Chen, C.; Niu, L.; Aziz, G.; Zhai, T.; Zhang, X. Multi-wavelength colloidal quantum dot lasers in distributed feedback cavities. Sci. China Inf. Sci. 2020, 63, 182401. [Google Scholar] [CrossRef]
- Samuel, I.D.; Turnbull, G.A. Polymer lasers: Recent advances. Mater. Today 2004, 7, 28–35. [Google Scholar] [CrossRef]
- Chénais, S.; Forget, S. Recent advances in solid-state organic lasers. Polym. Int. 2012, 61, 390–406. [Google Scholar] [CrossRef]
- Kuehne, A.J.; Gather, M.C. Organic lasers: Recent developments on materials, device geometries, and fabrication techniques. Chem. Rev. 2016, 116, 12823–12864. [Google Scholar] [CrossRef]
- Samuel, I.D.W.; Turnbull, G.A. Organic semiconductor lasers. Chem. Rev. 2007, 107, 1272–1295. [Google Scholar] [CrossRef]
- Fu, Y.; Zhai, T. Distributed feedback organic lasing in photonic crystals. Front. Optoelectron. 2020, 13, 18–34. [Google Scholar] [CrossRef]
- Zhou, P.; Niu, L.; Hayat, A.; Cao, F.; Zhai, T.; Zhang, X. Operating characteristics of high-order distributed feedback polymer lasers. Polymers 2019, 11, 258. [Google Scholar] [CrossRef]
- Erdogan, T.; King, O.; Wicks, G.; Hall, D.; Anderson, E.H.; Rooks, M. Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser. Appl. Phys. Lett. 1992, 60, 1921–1923. [Google Scholar] [CrossRef]
- Bauer, C.; Giessen, H.; Schnabel, B.; Kley, E.B.; Schmitt, C.; Scherf, U.; Mahrt, R. A Surface-Emitting Circular Grating Polymer Laser. Adv. Mater. 2001, 13, 1161–1164. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Zhang, Z.; Psaltis, D.; Scherer, A. Nanoimprinted circular grating distributed feedback dye laser. Appl. Phys. Lett. 2007, 91, 051109. [Google Scholar] [CrossRef]
- Jordan, R.H.; Hall, D.G.; King, O.; Wicks, G.; Rishton, S. Lasing behavior of circular grating surface-emitting semiconductor lasers. J. Opt. Soc. Am. B 1997, 14, 449–453. [Google Scholar] [CrossRef]
- Gao, Y.; Tobing, L.Y.; Kiffer, A.l.; Zhang, D.H.; Dang, C.; Demir, H.V. Azimuthally polarized, circular colloidal quantum dot laser beam enabled by a concentric grating. ACS Photon. 2016, 3, 2255–2261. [Google Scholar] [CrossRef]
- Salerno, M.; Gigli, G.; Zavelani-Rossi, M.; Perissinotto, S.; Lanzani, G. Effects of morphology and optical contrast in organic distributed feedback lasers. Appl. Phys. Lett. 2007, 90, 111110. [Google Scholar] [CrossRef]
- Erdogan, T.; Hall, D. Circularly symmetric distributed feedback semiconductor laser: An analysis. J. Appl. Phys. 1990, 68, 1435–1444. [Google Scholar] [CrossRef]
- Prins, F.; Kim, D.K.; Cui, J.; De Leo, E.; Spiegel, L.L.; McPeak, K.M.; Norris, D.J. Direct patterning of colloidal quantum-dot thin films for enhanced and spectrally selective out-coupling of emission. Nano Lett. 2017, 17, 1319–1325. [Google Scholar] [CrossRef]
- Zhai, T.; Tong, F.; Wang, Y.; Wu, X.; Li, S.; Wang, M.; Zhang, X. Polymer lasers assembled by suspending membranes on a distributed feedback grating. Opt. Express 2016, 24, 22028–22033. [Google Scholar] [CrossRef]
- Zhai, T.; Wang, Y.; Liu, H.; Zhang, X. Large-scale fabrication of flexible metallic nanostructure pairs using interference ablation. Opt. Express 2015, 23, 1863–1870. [Google Scholar] [CrossRef]
- Gianordoli, S.; Hainberger, R.; Köck, A.; Finger, N.; Gornik, E.; Hanke, C.; Korte, L. Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes. Appl. Phys. Lett. 2000, 77, 2295–2297. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, S.; Hayat, A.; Cao, F.; Zhai, T. Single-Mode Lasing in Polymer Circular Gratings. Materials 2021, 14, 2318. https://doi.org/10.3390/ma14092318
Chu S, Hayat A, Cao F, Zhai T. Single-Mode Lasing in Polymer Circular Gratings. Materials. 2021; 14(9):2318. https://doi.org/10.3390/ma14092318
Chicago/Turabian StyleChu, Saisai, Anwer Hayat, Fengzhao Cao, and Tianrui Zhai. 2021. "Single-Mode Lasing in Polymer Circular Gratings" Materials 14, no. 9: 2318. https://doi.org/10.3390/ma14092318
APA StyleChu, S., Hayat, A., Cao, F., & Zhai, T. (2021). Single-Mode Lasing in Polymer Circular Gratings. Materials, 14(9), 2318. https://doi.org/10.3390/ma14092318