Synthesis and Characterization of a Nearly Single Bulk Ti2AlN MAX Phase Obtained from Ti/AlN Powder Mixture through Spark Plasma Sintering
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barsoum, M.W.; Radovic, M. Elastic and mechanical properties of the MAX phases. Annu. Rev. Mater. Res. 2011, 41, 195–227. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, X.; Jia, D.; Zhou, Y.; van der Zwaag, S. On the formation mechanisms and properties of MAX phases: A review. J. Eur. Ceram. Soc. 2021. [Google Scholar] [CrossRef]
- Barsoum, M.W. The MN+ 1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem. 2000, 28, 201–281. [Google Scholar] [CrossRef]
- Radovic, M.; Barsoum, M.W. MAX phases: Bridging the gap between metals and ceramics. Am. Ceram. Soc. Bull. 2013, 92, 20–27. [Google Scholar]
- Wang, Z.; Liu, J.; Wang, L.; Li, X.; Ke, P.; Wang, A. Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique. Appl. Surf. Sci. 2017, 396, 1435–1442. [Google Scholar] [CrossRef]
- Barsoum, M.W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides; John Wiley & Sons: Daytona Beach, FL, USA, 2013. [Google Scholar]
- Sokol, M.; Natu, V.; Kota, S.; Barsoum, M.W. On the chemical diversity of the MAX phases. Trends Chem. 2019, 1, 210–223. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: A review. J. Mater. Sci. Technol. 2010, 26, 385–416. [Google Scholar] [CrossRef]
- Schuster, J.; Bauer, J. The ternary system titanium-aluminum-nitrogen. J. Solid State Chem. 1984, 53, 260–265. [Google Scholar] [CrossRef]
- Gao, J.; Li, C.; Wang, N.; Du, Z. Thermodynamic analysis of the Ti-Al-N system. J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. 2008, 15, 420–424. [Google Scholar] [CrossRef]
- Sun, Z.; Music, D.; Ahuja, R.; Schneiderv, J.M. Ab initio study of M2AlN (M= Ti, V, Cr). J. Phys. Condens. Matter 2004, 17, L15. [Google Scholar] [CrossRef]
- Barsoum, M.; El-Raghy, T.; Ali, M. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Metall. Mater. Trans. A 2000, 31, 1857–1865. [Google Scholar] [CrossRef]
- Scabarozi, T.; Ganguly, A.; Hettinger, J.D.; Lofland, S.E.; Amini, S.; Finkel, P.; El-Raghy, T.; Barsoum, W.M. Electronic and thermal properties of Ti3Al (C0.5, N0.5)2, Ti2Al (C0.5, N0.5) and Ti2AlN. J. Appl. Phys. 2008, 104, 073713. [Google Scholar] [CrossRef]
- Tian, J.J.; Zhang, L.L.; Bi, X.W.; Liu, G.Y.; Ding, Z.M. Ti2AlN prepared by self-propagating high-temperature combustion method using TiN as additive. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013. [Google Scholar]
- Chlubny, L.; Lis, J.; Buko, M. Influence of nitrogen pressure on shs synthesis of Ti2AlN Powders. In Developments in Strategic Ceramic Materials: A Collection of Papers Presented at the 39th International Conference on Advanced Ceramics and Composites, 25–30 January 2015; John Wiley & Sons: Daytona Beach, FL, USA, 2015. [Google Scholar]
- Yeh, C.L.; Kuo, C.W.; Wu, F.S. Formation of Ti2AlN by Solid–Gas Combustion Synthesis with AlN-and TiN-Diluted Samples in Nitrogen. Int. J. Appl. Ceram. Technol. 2010, 7, 730–737. [Google Scholar] [CrossRef]
- Tian, J.J.; Zhai, F.R.; Zhang, L.L.; Liu, G.Y.; Ding, Z.M. Effect of N2 pressure on the phase composition and morphology of Ti2AlN prepared by self-propagating combustion method. In Advanced Materials Research; Trans Tech Publ: Bäch, Switzerland, 2013. [Google Scholar]
- Zhu, J.F.; Han, N.; Wang, K.; Wang, F. Fabrication of Ti2AlN by mechanical alloying and hot press sintering. In Advanced Materials Research; Trans Tech Publ: Bäch, Switzerland, 2011. [Google Scholar]
- Chlubny, L.; Chlubny, L.; Lis, J.; Lis, J.; Bucko, M.; Bucko, M.; Kata, D.; Kata, D. Properties of hot-pressed Ti2AlN obtained by SHS process. In Advanced Ceramic Coatings Materials Extreme Environments II; Wiley: Hoboken, NJ, USA, 2012; pp. 171–177. [Google Scholar]
- Lin, Z.; Zhuo, M.; Li, M.; Wang, J.; Zhou, Y. Synthesis and microstructure of layered-ternary Ti2AlN ceramic. Scr. Mater. 2007, 56, 1115–1118. [Google Scholar] [CrossRef]
- Ming, Y.; Chen, Y.; Mei, B.; Zhu, J. Synthesis of high-purity Ti2AlN ceramic by hot pressing. Trans. Nonferrous Met. Soc. China 2008, 18, 82–85. [Google Scholar]
- Wu, C.; Li, Y.; Li, Q.; Hou, G. The emergence for multilamellar Ti–Al–N solid solution in Ti/AlN composites sintered at various temperatures. J. Am. Ceram. Soc. 2017, 100, 378–383. [Google Scholar] [CrossRef]
- Barsoum, M.W.; Brodkin, D.; El-Raghy, T. Layered machinable ceramics for high temperature applications. Scr. Mater. 1997, 36, 535–541. [Google Scholar] [CrossRef]
- Jordan, J.L.; Thadhani, N.N. Effect of shock-activation on post-shock reaction synthesis of ternary ceramics. In AIP Conference Proceedings; American Institute of Physics: University Park, MD, USA, 2002. [Google Scholar]
- Kovalev, D.Y.; Luginina, M.; Sytschev, A. Reaction synthesis of the Ti2AlN MAX-phase. Russ. J. Non Ferr. Met. 2017, 58, 303–307. [Google Scholar] [CrossRef]
- Cui, B.; Sa, R.; Jayaseelan, D.D.; Inam, F.; Reece, M.J.; Lee, W.E. Microstructural evolution during high-temperature oxidation of spark plasma sintered Ti2AlN ceramics. Acta Mater. 2012, 60, 1079–1092. [Google Scholar] [CrossRef]
- Yan, M.; Mei, B.; Zhu, J.; Tian, C.; Wang, P. Synthesis of high-purity bulk Ti2AlN by spark plasma sintering (SPS). Ceram. Int. 2008, 34, 1439–1442. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, Z.; Wang, J.; Qiao, G.; Jin, Z.; Shen, Z. Reactive consolidation of layered-ternary Ti2AlN ceramics by spark plasma sintering of a Ti/AlN powder mixture. J. Eur. Ceram. Soc. 2011, 31, 863–868. [Google Scholar] [CrossRef]
- Gilev, V.; Kachenyuk, M. Phase formation in the synthesis of Ti 2 AlN by spark plasma sintering in the Ti/AlN system. Refract. Ind. Ceram. 2019, 59, 658–662. [Google Scholar] [CrossRef]
- Li, X.; Gonzalez-Julian, J.; Malzbender, J. Fabrication and mechanical performance of Ti2AlN prepared by FAST/SPS. J. Eur. Ceram. Soc. 2020, 40, 4445–4453. [Google Scholar] [CrossRef]
- Ghosh, N.; Harimkar, S. Consolidation and synthesis of MAX phases by Spark Plasma Sintering (SPS): A review. In Advances in Science and Technology of Mn+ 1AXn Phases; Elsevier: Amsterdam, The Netherlands, 2012; pp. 47–80. [Google Scholar]
- Munir, Z.; Anselmi-Tamburini, U.; Ohyanagi, M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 2006, 41, 763–777. [Google Scholar] [CrossRef]
- Low, I.-M. Advances in Science and Technology of Mn+ 1AXn Phases; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Akhlaghi, M.; Tayebifard, S.A.; Salahi, E.; Asl, M.S.; Schmidt, G. Self-propagating high-temperature synthesis of Ti3AlC2 MAX phase from mechanically-activated Ti/Al/graphite powder mixture. Ceram. Int. 2018, 44, 9671–9678. [Google Scholar] [CrossRef]
- Ud Din, M.F.; Yang, C.; Tang, Y.; Tian, Y.; Luo, Y.; Wu, Y.; Que, W. Efficient and cost-effective method to synthesize highly purified Ti4AlN3 and Ti2AlN. J. Adv. Dielectr. 2019, 9, 1950008. [Google Scholar] [CrossRef]
- ASTM, A. B962-17-Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle; American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2017. [Google Scholar]
- Villars, K.C. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (on DVD); Release 2018/19; ASM International: Materials Park, OH, USA, 2018. [Google Scholar]
- Procopio, A.; El-Raghy, T.; Barsoum, M. Synthesis of Ti4AlN3 and phase equilibria in the Ti-Al-N system. Metall. Mater. Trans. A 2000, 31, 373–378. [Google Scholar]
- Schramm, I.; Pauly, C.; Jõesaar, M.P.J.; Eklund, P.; Schmauch, J.; Mücklich, F.; Odén, M. Solid state formation of Ti4AlN3 in cathodic arc deposited (Ti1− xAlx) Ny alloys. Acta Mater. 2017, 129, 268–277. [Google Scholar] [CrossRef]
- Low, I.-M.; Pang, W.K.; Kennedy, S.; Smith, R. High-temperature thermal stability of Ti2AlN and Ti4AlN3: A comparative diffraction study. J. Eur. Ceram. Soc. 2011, 31, 159–166. [Google Scholar] [CrossRef]
- Salvo, C.; Chicardi, E.; García-Garrido, C.; Jiménez, J.; Aguilar, C.; Usuba, J.; Mangalaraja, R. The influence of mechanical activation process on the microstructure and mechanical properties of bulk Ti2AlN MAX phase obtained by reactive hot pressing. Ceram. Int. 2019, 45, 17793–17799. [Google Scholar] [CrossRef]
- Zhang, Y.; Franke, P.; Seifert, H.J. CALPHAD modeling of metastable phases and ternary compounds in Ti-Al-N system. Calphad 2017, 59, 142–153. [Google Scholar] [CrossRef]
- Hasegawa, M. Ellingham diagram. In Treatise on Process Metallurgy; Elsevier: Amsterdam, The Netherlands, 2014; pp. 507–516. [Google Scholar]
- Rawn, C.; Barsoum, M.W.; El-Raghy, T.; Procipio, A.; Hoffmann, C.M.; Hubbard, C.R. Structure of Ti4AlN3—A layered Mn+ 1AXn nitride. Mater. Res. Bull. 2000, 35, 1785–1796. [Google Scholar] [CrossRef]
- Li, J.; Mei, Q.; Cui, Y.; Yang, R. Production of Al2O3–Ti2AlN composite with novel combination of high temperature properties. Mater. Sci. Eng. A 2014, 607, 6–9. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvo, C.; Chicardi, E.; Poyato, R.; García-Garrido, C.; Jiménez, J.A.; López-Pernía, C.; Tobosque, P.; Mangalaraja, R.V. Synthesis and Characterization of a Nearly Single Bulk Ti2AlN MAX Phase Obtained from Ti/AlN Powder Mixture through Spark Plasma Sintering. Materials 2021, 14, 2217. https://doi.org/10.3390/ma14092217
Salvo C, Chicardi E, Poyato R, García-Garrido C, Jiménez JA, López-Pernía C, Tobosque P, Mangalaraja RV. Synthesis and Characterization of a Nearly Single Bulk Ti2AlN MAX Phase Obtained from Ti/AlN Powder Mixture through Spark Plasma Sintering. Materials. 2021; 14(9):2217. https://doi.org/10.3390/ma14092217
Chicago/Turabian StyleSalvo, Christopher, Ernesto Chicardi, Rosalía Poyato, Cristina García-Garrido, José Antonio Jiménez, Cristina López-Pernía, Pablo Tobosque, and Ramalinga Viswanathan Mangalaraja. 2021. "Synthesis and Characterization of a Nearly Single Bulk Ti2AlN MAX Phase Obtained from Ti/AlN Powder Mixture through Spark Plasma Sintering" Materials 14, no. 9: 2217. https://doi.org/10.3390/ma14092217
APA StyleSalvo, C., Chicardi, E., Poyato, R., García-Garrido, C., Jiménez, J. A., López-Pernía, C., Tobosque, P., & Mangalaraja, R. V. (2021). Synthesis and Characterization of a Nearly Single Bulk Ti2AlN MAX Phase Obtained from Ti/AlN Powder Mixture through Spark Plasma Sintering. Materials, 14(9), 2217. https://doi.org/10.3390/ma14092217