Microstructure and Hot Deformation Behavior of the Mg–8 wt.% Sn–1.5 wt.% Al Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Stress–Strain Curve
3.2. Constitutive Equation
3.3. Processing Map
4. Discussion
4.1. Effect of Temperature on Microstructure
4.2. Effect of Strain Rate on Microstructure
4.3. Texture Analysis under Different Deformation Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
R | the gas constant (8.314 J/K) |
T | the Kelvin temperature |
Z | the constant of hot deformation |
A1 | the material constants |
A2 | the material constants |
n1 | the material constants |
α | the material constants |
β | the material constants |
σ | Stress |
strain rate | |
n | Stress index |
P | the energy absorbed per unit volume during hot deformation |
G | energy of dissipation |
J | energy related to the microstructure change during deformation |
m | the strain rate–sensitive coefficient |
η | dissipative power factor |
a | temperature–dependent constants |
b | temperature–dependent constants |
c | temperature–dependent constants |
d | temperature–dependent constants |
References
- Zhang, D.; Suzuki, M.; Maruyama, K. Microstructural evolution of a heat–resistant magnesium alloy due to friction stir welding. Scr. Mater. 2005, 52, 899–903. [Google Scholar] [CrossRef]
- Wu, A.R.; Xia, C.Q.; Wang, S.W. Effects of cerium on the microstructure and mechanical properties of AZ31 alloy. Rare Met. 2006, 25, 371–376. [Google Scholar] [CrossRef]
- Fang, X.; Yi, D.; Wang, B.; Wu, C.; Zhang, H. Hot compression deformation behavior of the Mg–Al–Y–Zn magnesium alloy. Rare Met. 2008, 27, 121–126. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, W.; Wang, F.; Ma, C. Development of heat resistant Mg–Zn–Al–based magnesium alloys by addition of La and Ca: Microstructure and tensile properties. J. Alloys Compd. 2016, 684, 8–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Pang, S.; Meng, T.; Zhi, Y.; Xu, Y.; Li, R. Investigation of tensile creep behavior of Mg–Gd–Y–Zr alloy based on creep constitutive model. Mater. Sci. Eng. A 2021, 805, 140567. [Google Scholar] [CrossRef]
- Yang, Y.; Huo, Q.; Zhang, Y.; Luo, L.; Xiao, Z.; Wang, J.; Yang, X. Effects of volume fraction of fine grains on the tensile creep properties of a hot–deformed Mg–Gd–Y–Zr alloy. Mater. Sci. Eng. A 2020, 777, 139052. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, Z.; Liu, Z.; Li, Y.; Guo, P.; Zhou, W.; Wu, Y. The effect of texture and grain size on improving the mechanical properties of Mg-Al-Zn alloys by friction stir processing. Sci. Rep. 2018, 8, 4196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Chen, X.; Pan, F.; Mao, J. Effects of Sn addition on microstructure and mechanical properties of Mg-Zn-Al alloys. J. Alloys Compd. 2017, 461, 209–215. [Google Scholar] [CrossRef]
- Liu, C.; Chen, H.; Song, M.; Nie, J.F. Electron beam irradiation induced metastable phase in a Mg–9.8 wt% Sn alloy. J. Mater. Sci. Technol. 2021, 84, 133–138. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Jung, I.H.; Sheng, L. Experimental investigation and thermodynamic modeling of the Mg–Sn–Sr ternary system. Calphad 2021, 72, 102237. [Google Scholar] [CrossRef]
- Huang, X.; Huang, W. Irrational crystallography of the ⟨1 1–2 0⟩ Mg Mg2Sn precipitates in an aged Mg–Sn–Mn alloy. Mater. Charact. 2019, 151, 260–266. [Google Scholar] [CrossRef]
- Fong, A.Y.; Kodera, Y.; Murata, M.; Imai, T.; Xu, H.; Dirmyer, M.R.; Garay, J.E. Kinetics of densification/phase transformation and transport properties of Mg–Sn cubic/trigonal composites. Mater. Sci. Eng. B 2020, 259, 114607. [Google Scholar] [CrossRef]
- Radha, R.; Sreekanth, D. Mechanical and corrosion behaviour of hydroxyapatite reinforced Mg–Sn alloy composite by squeeze casting for biomedical applications. J. Magnes. Alloy. 2020, 8, 452–460. [Google Scholar] [CrossRef]
- Özarslan, S.; Şevik, H.; Sorar, İ. Microstructure, mechanical and corrosion properties of novel Mg–Sn–Ce alloys produced by high pressure die casting. Mater. Sci. Eng. C 2019, 105, 110064. [Google Scholar] [CrossRef]
- Yasseri, M.; Mitra, K.; Sankhla, A.; Deboor, J.; Müller, E. Influence of Mg loss on the phase stability in Mg2X (X = Si, Sn) and its correlation with coherency strain. Acta Mater. 2021, 208, 116737. [Google Scholar] [CrossRef]
- Radha, R.; Sreekanth, D. Electroless tin coated hydroxyapatite reinforced Mg–Sn alloy composite for enhanced bio corrosion resistance and bioactivity. Compos. Commun. 2020, 21, 100372. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhang, Y.; Cong, M.Q.; Lu, Y.L.; Li, X.P. Effect of Sn content on microstructure and tensile properties of as–cast and as–extruded Mg–8Li–3Al–(1, 2, 3) Sn alloys. Trans. Nonferrous Met. Soc. China 2020, 30, 2079–2089. [Google Scholar] [CrossRef]
- Elsayed, F.R.; Sasaki, T.T.; Ohkubo, T.; Takahashi, H.; Xu, S.W.; Kamado, S.; Hono, K. Effect of extrusion conditions on microstructure and mechanical properties of micro alloyed Mg-Sn-Al-Zn alloys. Mater. Sci. Eng. A 2013, 588, 318–328. [Google Scholar] [CrossRef]
- Kang, D.H.; Park, S.S.; Oh, Y.S.; Kim, N.J. Effect of nano-particles on the creep resistance of Mg-Sn based alloys. Mater. Sci. Eng. A 2007, 449, 318–321. [Google Scholar] [CrossRef]
- Liu, J.L. Effect of Al and Sn Content on the As-Cast Microstructure and Mechanical Properties of Mg-Al-Sn Magnesium Alloys; Jilin University: Changchun, China, 2011. [Google Scholar]
- Mendis, C.L.; Bettles, C.J. An enhanced age hardening response in Mg-Sn based alloys containing Zn. Mater. Sci. Eng. A 2006, 435, 163–171. [Google Scholar] [CrossRef]
- Gorny, A.; Katsman, A. Precipitation-and stress-influenced coarsening in Mg-based Mg-Zn-Sn-Y and Mg-Zn-Sn-Sb alloys. J. Mater. Res. 2013, 23, 1228–1236. [Google Scholar] [CrossRef]
- Zener, C.; Hollomon, J.H. Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 1944, 15, 22–32. [Google Scholar] [CrossRef]
- McQueen, H.J.; Yue, S.; Ryan, N.D.; Fry, E. Hot working characteristics of steels in austenitic state. J. Mater. Process. Technol. 1995, 53, 293–310. [Google Scholar] [CrossRef]
- Malas, J.C.; Seetharama, V. Using Material Behavior Models to Develop Process Control Strategies. JOM 1992, 44, 8–14. [Google Scholar] [CrossRef]
- Alexander, J.M. Modelling of Hot Deformation of Steel; Springer: Berlin, Germany, 1989; pp. 105–115. [Google Scholar]
- Wellstead, P.E. Introduction to Physical Systems Modeling; Academic Press: London, UK, 1979; pp. 133–156. [Google Scholar]
- Progogine, I. Dissipative Structure Theory; Bantam Books: New York, NY, USA, 1978; pp. 477–487. [Google Scholar]
- Prasad, Y.V.R.K.; Seshacharyulu, T. Modelling of hot deformation for microstructural control. Int. Mater. Rev. 1998, 43, 243–258. [Google Scholar] [CrossRef]
- Fang, D.; Cheng, X.; Ye, X.; Wu, H.; Zhang, C.; Xu, K.; Wang, N. Study on thermophysical performance of Mg–Bi–Sn phase–change alloys for high temperature thermal energy storage. Vacuum 2020, 174, 109164. [Google Scholar] [CrossRef]
Strain Rate | 653 K | 693 K | 733 K | 773 K |
---|---|---|---|---|
0.001 s−1 | 24.9 MPa | 14.62 MPa | 10.73 MPa | 10.25 MPa |
0.01 s−1 | 36.65 MPa | 25.3 MPa | 17.59 MPa | 16.64 MPa |
0.1 s−1 | 54.24 MPa | 38.84 MPa | 29.51 MPa | 24.89 MPa |
1 s−1 | 71.44 MPa | 60.52 MPa | 45.18 MPa | 34.8 MPa |
Temperature | 653 K | 693 K | 733 K | 773 K | Average |
---|---|---|---|---|---|
1/n1 | 0.154 | 0.204 | 0.210 | 0.177 | 0.186 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Li, Y.; Zhang, K.; Li, X.; Ma, M.; Shi, G.; Yuan, J.; Zhang, H. Microstructure and Hot Deformation Behavior of the Mg–8 wt.% Sn–1.5 wt.% Al Alloy. Materials 2021, 14, 2050. https://doi.org/10.3390/ma14082050
Sun Z, Li Y, Zhang K, Li X, Ma M, Shi G, Yuan J, Zhang H. Microstructure and Hot Deformation Behavior of the Mg–8 wt.% Sn–1.5 wt.% Al Alloy. Materials. 2021; 14(8):2050. https://doi.org/10.3390/ma14082050
Chicago/Turabian StyleSun, Zhaoqian, Yongjun Li, Kui Zhang, Xinggang Li, Minglong Ma, Guoliang Shi, Jiawei Yuan, and Hongju Zhang. 2021. "Microstructure and Hot Deformation Behavior of the Mg–8 wt.% Sn–1.5 wt.% Al Alloy" Materials 14, no. 8: 2050. https://doi.org/10.3390/ma14082050
APA StyleSun, Z., Li, Y., Zhang, K., Li, X., Ma, M., Shi, G., Yuan, J., & Zhang, H. (2021). Microstructure and Hot Deformation Behavior of the Mg–8 wt.% Sn–1.5 wt.% Al Alloy. Materials, 14(8), 2050. https://doi.org/10.3390/ma14082050