Comparison between Subsequent Irradiation and Co-Irradiation into SIMP Steel
Abstract
1. Introduction
2. Experimental Process
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhan, W.L.; Xu, H.S. Advanced Fission Energy Program-ADS Transmutation System. China Acad. J. Electron. Publ. House 2012, 27, 375–381. [Google Scholar]
- Liu, J.; Yan, W.; Sha, W.; Wang, W.; Shan, Y.; Yang, K. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic. J. Nucl. Mater. 2016, 473, 189–196. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, W.; Shi, Q.; Li, Y.; Shan, Y.; Yang, K. Silicon enhances high temperature oxidation resistance of SIMP steel at 700 °C. Corros. Sci. 2020, 167, 108519. [Google Scholar] [CrossRef]
- Li, Y.-F.; Shen, T.-L.; Gao, X.; Gao, N.; Yao, C.-F.; Sun, J.-R.; Wei, K.-F.; Li, B.-S.; Zhang, P.; Cao, X.-Z.; et al. Helium-Implantation-Induced Damage in NHS Steel Investigated by Slow-Positron Annihilation Spectroscopy. Chin. Phys. Lett. 2014, 31, 036101. [Google Scholar] [CrossRef]
- Li, Y.-F.; Shen, T.-L.; Gao, X.; Yao, C.-F.; Wei, K.-F.; Sun, J.-R.; Li, B.-S.; Zhu, Y.-B.; Pang, L.-L.; Cui, M.-H.; et al. Cavity Swelling in Three Ferritic-Martensitic Steels Irradiated by 196 MeV Kr Ions. Chin. Phys. Lett. 2013, 30, 126101. [Google Scholar] [CrossRef]
- Wang, J.; Gao, X.; Wang, Z.-G.; Wei, K.-F.; Yao, C.-F.; Cui, M.-H.; Sun, J.-R.; Li, B.-S.; Pang, L.-L.; Zhu, Y.-B.; et al. TEM Characterization of Helium Bubbles in T91 and MNHS Steels Implanted with 200 keV He Ions at Different Temperatures. Chin. Phys. Lett. 2015, 32, 076101. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Z.; Gao, X.; Cui, M.; Li, B.; Sun, J.; Yao, C.; Wei, K.; Shen, T.; Pang, L.; et al. Positron annihilation Doppler broadening spectroscopy study on Fe-ion irradiated NHS steel. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 344, 5–10. [Google Scholar] [CrossRef]
- Krsjak, V.; Degmova, J.; Sojak, S.; Slugen, V. Effects of displacement damage and helium production rates on the nucleation and growth of helium bubbles—Positron annihilation spectroscopy aspects. J. Nucl. Mater. 2018, 499, 38–46. [Google Scholar] [CrossRef]
- Degmova, J.; Krsjak, V.; Shen, T.L.; Veternikova, J.S.; Gatciova, A.; Sojak, S.; Hruska, P. Near-surface investigation of positron diffusion length in helium-implanted Fe9Cr and its ODS variant. Appl. Surf. Sci. 2021, 538, 148004. [Google Scholar] [CrossRef]
- Kršjak, V.; Kuriplach, J.; Shen, T.; Sabelová, V.; Sato, K.; Dai, Y. Helium behavior in ferritic/martensitic steels irradiated in spallation target. J. Nucl. Mater. 2015, 456, 382–388. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, P.; Zhu, Y.; Wang, Z.; Wan, F.; Zhan, Q. Evaluation of irradiation hardening and microstructure evolution under the synergistic interaction of He and subsequent Fe ions irradiation in CLAM steel. J. Alloys Compd. 2016, 676, 481–488. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Meng, Y.; Liu, J.; Gou, J.; Xian, Y.; Song, Y. Nanoindentation on V–4Ti alloy irradiated by H and He ions. J. Nucl. Mater. 2015, 459, 1–4. [Google Scholar] [CrossRef]
- Jin, P.; Shen, T.L.; Cui, M.H.; Zhu, Y.B.; Li, B.S.; Zhang, T.M.; Li, J.Y.; Jin, S.X.; Lu, E.Y.; Cao, X.Z.; et al. Study on vacancy-type defects in SIMP steel induced by separate and sequential H and He ion implantation. J. Nucl. Mater. 2019, 520, 131–139. [Google Scholar] [CrossRef]
- Kohyama, A.; Katoh, Y.; Ando, M.; Jimbo, K. A new Multiple Beams–Material Interaction Research Facility for radiation damage studies in fusion materials. Fusion Eng. Des. 2000, 51–52, 789–795. [Google Scholar] [CrossRef]
- Interactions of Ions with Matter. Available online: http://www.srim.org (accessed on 12 March 2021).
- Nano Measurer. Available online: https://www.editsprings.com/Home/ArticleDetail?sort=352394 (accessed on 12 March 2021).
- Xiao, X.; Yu, L. Nano-indentation of ion-irradiated nuclear structural materials: A review. Nucl. Mater. Energy 2020, 22, 100721. [Google Scholar] [CrossRef]
- Xiao, X.Z.; Chen, L.R.; Yu, L.; Duan, H.L. Modelling nano-indentation of ion-irradiated FCC single crystals by strain-gradient crystal plasticity theory. Int. J. Plast. 2019, 116, 216–231. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Kasada, R.; Takayama, Y.; Yabuuchi, K.; Kimura, A. A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques. Fusion Eng. Des. 2011, 86, 2658–2661. [Google Scholar] [CrossRef]
- Lee, E.; Hunn, J.; Rao, G.; Klueh, R.; Mansur, L. Triple ion beam studies of radiation damage in 9Cr–2WVTa ferritic/martensitic steel for a high power spallation neutron source. J. Nucl. Mater. 1999, 271–272, 385–390. [Google Scholar] [CrossRef]
- Martin, J.W. Micromechanisms in Partcle-Hardened Alloys; Cambridge University: Cambridge, UK, 1980. [Google Scholar]
- Jenkins, M.L.; Kirk, M.A. Characterization of Radiation Damage by Transmission Electron Microscopy; Informa UK Limited: London, UK, 2001. [Google Scholar]
- Li, B.; Wang, Z.; Wei, K.; Shen, T.; Yao, C.; Zhang, H.; Sheng, Y.; Lu, X.; Xiong, A.; Han, W. Evaluation of helium effect on irradiation hardening in F82H, ODS, SIMP and T91 steels by nano-indentation method. Fusion Eng. Des. 2019, 142, 6–12. [Google Scholar] [CrossRef]
- Yao, B.; Edwards, D.; Kurtz, R. TEM characterization of dislocation loops in irradiated bcc Fe-based steels. J. Nucl. Mater. 2013, 434, 402–410. [Google Scholar] [CrossRef]
- Yao, Z.; Hernández-Mayoral, M.; Jenkins, M.; Kirk, M. Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 1: Damage evolution in thin-foils at lower doses. Philos. Mag. 2008, 88, 2851–2880. [Google Scholar] [CrossRef]
- Tanaka, T.; Oka, K.; Ohnuki, S.; Yamashita, S.; Suda, T.; Watanabe, S.; Wakai, E.; Tanaka, T.; Oka, K.; Ohnuki, S.; et al. Synergistic effect of helium and hydrogen for defect evolution under multi-ion irradiation of Fe–Cr ferritic alloys. J. Nucl. Mater. 2004, 329-333, 294–298. [Google Scholar] [CrossRef]
- Wakai, E.; Sawai, T.; Furuya, K.; Naito, A.; Aruga, T.; Kikuchi, K.; Yamashita, S.; Ohnuki, S.; Yamamoto, S.; Naramoto, H.; et al. Effect of triple ion beams in ferritic/martensitic steel on swelling behavior. J. Nucl. Mater. 2002, 307–311, 278–282. [Google Scholar] [CrossRef]
- Hu, W.; Guo, L.; Chen, J.; Luo, F.; Li, T.; Ren, Y.; Suo, J.; Yang, F. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures. Fusion Eng. Des. 2014, 89, 324–328. [Google Scholar] [CrossRef]
- Marian, J.; Hoang, T.; Fluss, M.; Hsiung, L.L. A review of helium–hydrogen synergistic effects in radiation damage observed in fusion energy steels and an interaction model to guide future understanding. J. Nucl. Mater. 2015, 462, 409–421. [Google Scholar] [CrossRef]
- Was, G.S. Fundamentals of Radiation Materials Science; Springer International Publishing: New York, NY, USA, 2017. [Google Scholar]
- Zhang, Y.; Weber, W.J. Ion irradiation and modification: The role of coupled electronic and nuclear energy dissipation and subsequent nonequilibrium processes in materials. Appl. Phys. Rev. 2020, 7, 041307. [Google Scholar] [CrossRef]
- Lescoat, M.-L.; Ribis, J.; Chen, Y.; Marquis, E.; Bordas, E.; Trocellier, P.; Serruys, Y.; Gentils, A.; Kaïtasov, O.; de Carlan, Y.; et al. Radiation-induced Ostwald ripening in oxide dispersion strengthened ferritic steels irradiated at high ion dose. Acta Mater. 2014, 78, 328–340. [Google Scholar] [CrossRef]
- Höfgen, A.; Heera, V.; Mücklich, A.; Eichhorn, F.; Skorupa, W. Ion-beam-induced crystal grain nucleation in amorphous silicon carbide. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2000, 161–163, 917–921. [Google Scholar] [CrossRef]
- Heera, V.; Stoemenos, J.; Kogler, R.; Skurupa, W. Amorphization and recrystallization of 6H-SiC by ion-beam irradiation. J. Appl. Phys. 1995, 77, 2999–3009. [Google Scholar] [CrossRef]
- Heera, V.; Stoemenos, J.; Kögler, R.; Skorupa, W. Complete recrystallization of amorphous silicon carbide layers by ion irradiation. Appl. Phys. Lett. 1995, 67, 1999–2001. [Google Scholar] [CrossRef]
- Nakata, J. Epitaxial crystallization during 600 °C furnace annealing of amorphous Si layer deposited by low-pressure chemical-vapor-deposition and irradiated with 1-MeV Xe ions. J. Appl. Phys. 1997, 82, 5446–5459. [Google Scholar] [CrossRef]
- Han, Y.; Li, B.S.; Wang, Z.G.; Peng, J.X.; Sun, J.R.; Wei, K.F.; Yao, C.-F.; Gao, N.; Gao, X.; Pang, L.-L.; et al. H-ion-induced annealing in He-ion implanted 4H-SiC. Chin. Phys. Lett. 2017, 34, 12801–12804. [Google Scholar] [CrossRef]
- Heinisch, H.; Gao, F.; Kurtz, R. Atomic-scale modeling of interactions of helium, vacancies and helium–vacancy clusters with screw dislocations in alpha-iron. Philos. Mag. 2010, 90, 885–895. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Wang, J.; Song, J.; Zhao, F.; Tang, H.; Li, B.; Xiong, A. Microstructure investigation of damage recovery in SiC by swift heavy ion irradiation. Mater. Des. Process. Commun. 2019, 1. [Google Scholar] [CrossRef]
- Thomé, L.; Velişa, G.; Miro, S.; Debelle, A.; Garrido, F.; Sattonnay, G.; Mylonas, S.; Trocellier, P.; Serruys, Y. Recovery effects due to the interaction between nuclear and electronic energy losses in SiC irradiated with a dual-ion beam. J. Appl. Phys. 2015, 117, 105901. [Google Scholar] [CrossRef]
- Debelle, A.; Backman, M.; Thomé, L.; Weber, W.J.; Toulemonde, M.; Mylonas, S.; Boulle, A.; Pakarinen, O.H.; Juslin, N.; Djurabekova, F.; et al. Combined experimental and computational study of the recrystallization process induced by electronic interactions of swift heavy ions with silicon carbide crystals. Phys. Rev. B 2012, 86, 100102. [Google Scholar] [CrossRef]
- Ando, M.; Tanigawa, H.; Jitsukawa, S.; Sawai, T.; Katoh, Y. Evaluation of hardening behavior of ion irradiated reduced activation ferritic/martensitic steels by an ultra-micro-indentation technique. J. Nucl. Mater. 2002, 307–311, 260–265. [Google Scholar] [CrossRef]
- Tunes, M.A.; Schon, C.G.; Greaves, G. Radiation-induced precipitation with concurrent bubbles formation in an austenitic stainless steel (AISI-348). Materials 2019, 7, 100408–100412. [Google Scholar]
- Timm, M.M.; Ítalo, M.O.; Tatsch, F.; Amaral, L.; Fichtner, P.F. Au and Ag ion irradiation effects on the carbide precipitation and Ar bubble formation in solubilized AISI 316L alloys. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2019, 458, 174–178. [Google Scholar] [CrossRef]
- Fang, X.-S.; Shen, T.-L.; Cui, M.-H.; Jin, P.; Li, B.-S.; Zhu, Y.-B.; Wang, Z.-G. Characterization of Microstructure and Stability of Precipitation in SIMP Steel Irradiated with Energetic Fe Ions *. Chin. Phys. Lett. 2017, 34, 116102. [Google Scholar] [CrossRef]
- Tunes, M.A.; Greaves, G.; Kremmer, T.M.; Vishnyakov, V.M.; Edmondson, P.D.; Donnelly, S.E.; Pogatscher, S.; Schön, C.G. Thermodynamics of an austenitic stainless steel (AISI-348) under in situ TEM heavy ion irradiation. Acta Mater. 2019, 179, 360–371. [Google Scholar] [CrossRef]
- Pareige, C.; Kuksenko, V.; Pareige, P. Behaviour of P, Si, Ni impurities and Cr in self ion irradiated Fe-Cr alloy-Comparison to neutron irradiation. J. Nucl. Mater. 2015, 456, 471–476. [Google Scholar] [CrossRef]
Steels | Fe | Cr | Si | W | Mn | C | V | Nb | P |
---|---|---|---|---|---|---|---|---|---|
SIMP | Bal | 10.7 | 1.4 | 1.2 | 0.5 | 0.2 | 0.2 | 0.01 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, T.; Liao, Q.; Yang, J.; Gu, W.; Ren, Y.; Jia, Z.; Li, B. Comparison between Subsequent Irradiation and Co-Irradiation into SIMP Steel. Materials 2021, 14, 1393. https://doi.org/10.3390/ma14061393
Wang Y, Zhang T, Liao Q, Yang J, Gu W, Ren Y, Jia Z, Li B. Comparison between Subsequent Irradiation and Co-Irradiation into SIMP Steel. Materials. 2021; 14(6):1393. https://doi.org/10.3390/ma14061393
Chicago/Turabian StyleWang, Yong, Tongmin Zhang, Qing Liao, Junyuan Yang, Weigang Gu, Yongfei Ren, Zheng Jia, and Bingsheng Li. 2021. "Comparison between Subsequent Irradiation and Co-Irradiation into SIMP Steel" Materials 14, no. 6: 1393. https://doi.org/10.3390/ma14061393
APA StyleWang, Y., Zhang, T., Liao, Q., Yang, J., Gu, W., Ren, Y., Jia, Z., & Li, B. (2021). Comparison between Subsequent Irradiation and Co-Irradiation into SIMP Steel. Materials, 14(6), 1393. https://doi.org/10.3390/ma14061393