Electropolymerised Polypyrroles as Active Layers for Molecularly Imprinted Sensors: Fabrication and Applications
Abstract
1. Introduction
2. Theoretical Considerations
3. Sensor Fabrication Methods
4. Detection of Contaminants
4.1. Detection of Antibiotics and Other Drugs
4.2. Detection of Other Contaminants
5. Detection of Bio-Active Substances
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharabi, D.; Paz, Y. Preferential photodegradation of contaminants by molecular imprinting on titanium dioxide. Appl. Catal. B Environ. 2010, 95, 169–178. [Google Scholar] [CrossRef]
- Yan, H.; Row, K.H. Characteristic and synthetic approach of molecularly imprinted polymer. Int. J. Mol. Sci. 2006, 7, 155–178. [Google Scholar] [CrossRef]
- Zembrzuska, D.; Kalecki, J.; Cieplak, M.; Lisowski, W.; Borowicz, P.; Noworyta, K.; Sharma, P.S. Electrochemically initiated co-polymerization of monomers of different oxidation potentials for molecular imprinting of electroactive analyte. Sens. Actuators B Chem. 2019, 298, 126884. [Google Scholar] [CrossRef]
- Abunahla, H.; Mohammad, B.; Alazzam, A.; Abi Jaoude, M.; Al-Qutayri, M.; Hadi, S.A.; Al-Sarawi, S.F. MOMSense: Metal-oxide-metal elementary glucose sensor. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, Y.; Lin, L.; Chen, H.; Zhao, M. Au nanoparticles@ metal organic framework/polythionine loaded with molecularly imprinted polymer sensor: Preparation, characterization, and electrochemical detection of tyrosine. J. Electr. Chem. 2020, 863, 114052. [Google Scholar] [CrossRef]
- Khadem, M.; Faridbod, F.; Norouzi, P.; Foroushani, A.R.; Ganjali, M.R.; Yarahmadi, R.; Shahtaheri, S.J. Voltammetric Determination of Carbofuran Pesticide in Biological and Environmental Samples Using a Molecularly Imprinted Polymer Sensor, a Multivariate Optimization. J. Anal. Chem. 2020, 75, 669–678. [Google Scholar] [CrossRef]
- Beduk, T.; Lahcen, A.A.; Tashkandi, N.; Salama, K.N. One-step electrosynthesized molecularly imprinted polymer on laser scribed graphene bisphenol a sensor. Sens. Actuators B Chem. 2020, 314, 128026. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Ciocan, V.; Öpik, A.; Syritski, V. Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 2020, 209, 120502. [Google Scholar] [CrossRef]
- Chunta, S.; Suedee, R.; Boonsriwong, W.; Lieberzeit, P.A. Biomimetic sensors targeting oxidized-low-density lipoprotein with molecularly imprinted polymers. Anal. Chim. Acta 2020, 1116, 27–35. [Google Scholar] [CrossRef]
- René, W.; Lenoble, V.; Chioukh, M.; Branger, C. A turn-on fluorescent ion-imprinted polymer for selective and reliable optosensing of lead in real water samples. Sens. Actuators B Chem. 2020, 319, 128252. [Google Scholar] [CrossRef]
- Cormack, P.A.; Elorza, A.Z. Molecularly imprinted polymers: Synthesis and characterisation. J. Chromatogr. B 2004, 804, 173–182. [Google Scholar] [CrossRef]
- Tokonami, S.; Shiigi, H.; Nagaoka, T. Molecularly imprinted overoxidized polypyrrole films for sensor applications from enantiorecognition to trace analysis. In Molecularly Imprinted Sensors; Elsevier: Amsterdam, The Netherlands, 2012; pp. 73–89. [Google Scholar]
- Seyfoddin, A.; Chan, A.; Chen, W.T.; Rupenthal, I.; Waterhouse, G.; Svirskis, D. Electro-responsive macroporous polypyrrole scaffolds for triggered dexamethasone delivery. Eur. J. Phar. Biopharm. 2015, 94, 419–426. [Google Scholar] [CrossRef]
- Zhang, B.; Molino, P.J.; Harris, A.R.; Yue, Z.; Moulton, S.E.; Wallace, G.G. Conductive and protein resistant polypyrrole films for dexamethasone delivery. J. Mater. Chem. B 2016, 4, 2570–2577. [Google Scholar] [CrossRef]
- Sirivisoot, S.; Pareta, R.; Webster, T.J. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology 2011, 22, 085101. [Google Scholar] [CrossRef] [PubMed]
- Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 2000, 29, 283–293. [Google Scholar]
- Zhang, Y.; Huang, W.; Yin, X.; Sarpong, K.A.; Zhang, L.; Li, Y.; Zhao, S.; Zhou, H.; Yang, W.; Xu, W. Computer-aided design and synthesis of molecular imprinting polymers based on doubly oriented functional multiwalled carbon nanotubes for electrochemically sensing bisphenol A. React. Funct. Polym. 2020, 157, 104767. [Google Scholar] [CrossRef]
- Bagdžiūnas, G. Theoretical design of molecularly imprinted polymers based on polyaniline and polypyrrole for detection of tryptophan. Mol. Syst. Des. Eng. 2020, 5, 1504–1512. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Ren, J.; Han, F.; Yu, X.; Tang, F.; Xue, F.; Chen, W.; Yang, J.; Jiang, Y.; et al. Facile construction of a molecularly imprinted polymer–based electrochemical sensor for the detection of milk amyloid A. Microchim. Acta 2020, 187, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Do, P.T.; Do, P.Q.; Nguyen, H.B.; Le, T.H.; Pham, H.V.; Nguyen, T.L.; Tran, Q.H. A highly sensitive electrode modified with graphene, gold nanoparticles, and molecularly imprinted over-oxidized polypyrrole for electrochemical determination of dopamine. J. Mol. Liquids 2014, 198, 307–312. [Google Scholar] [CrossRef]
- Işık, D.; Şahin, S.; Caglayan, M.O.; Üstündağ, Z. Electrochemical impedimetric detection of kanamycin using molecular imprinting for food safety. Microchem. J. 2021, 160, 105713. [Google Scholar] [CrossRef]
- Shamsipur, M.; Moradi, N.; Pashabadi, A. Coupled electrochemical-chemical procedure used in construction of molecularly imprinted polymer-based electrode: A highly sensitive impedimetric melamine sensor. J. Solid State Electrochem. 2018, 22, 169–180. [Google Scholar] [CrossRef]
- Qader, B.; Baron, M.; Hussain, I.; Gonzalez-Rodriguez, J. Electrochemical determination of 2-isopropoxyphenol in glassy carbon and molecularly imprinted poly-pyrrole electrodes. J. Electroanal. Chem. 2018, 821, 16–21. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, C.; Wang, M.; Wang, L.S. Sensitive electrochemical detection of gp120 based on the combination of NBD-556 and gp120. Talanta 2019, 196, 486–492. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, Q.; Liu, C.; Wang, L. A nanospherical conjugated microporous polymer-graphene nanosheets modified molecularly imprinted electrochemical sensor for high sensitivity detection of α-Synuclein. J. Electroanal. Chem. 2020, 862, 113994. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.T.; Carmeli, Y.; Falagas, M.T.; Giske, C.T.; Harbarth, S.; Hindler, J.T.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- García, J.; García-Galán, M.J.; Day, J.W.; Boopathy, R.; White, J.R.; Wallace, S.; Hunter, R.G. A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresource Technol. 2020, 307, 123228. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zou, M.; Han, Y.; Zhang, F.; Li, J.; Zhu, X. Analysis of the kanamycin in raw milk using the suspension array. J. Chem. 2012, 2013. [Google Scholar] [CrossRef]
- Nezhadali, A.; Mehri, L.; Shadmehri, R. Determination of methimazole based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite sensor. Mater. Sci. Eng. C 2018, 85, 225–232. [Google Scholar] [CrossRef]
- Nezhadali, A.; Bonakdar, G.A. Multivariate optimization of mebeverine analysis using molecularly imprinted polymer electrochemical sensor based on silver nanoparticles. J. Food Drug Anal. 2019, 27, 305–314. [Google Scholar] [CrossRef]
- Nezhadali, A.; Sadeghzadeh, S. Experimental design-artificial neural network-genetic algorithm optimization and computer-assisted design of celecoxib molecularly imprinted polymer/carbon nanotube sensor. J. Electroanal. Chem. 2017, 795, 32–40. [Google Scholar] [CrossRef]
- Devkota, L.; Nguyen, L.T.; Vu, T.T.; Piro, B. Electrochemical determination of tetracycline using AuNP-coated molecularly imprinted overoxidized polypyrrole sensing interface. Electrochim. Acta 2018, 270, 535–542. [Google Scholar] [CrossRef]
- Koseoglu, T.S.; Durgut, A. Development of a Novel Molecularly Imprinted Overoxidized Polypyrrole Electrode for the Determination of Sulfasalazine. Electroanalysis 2020, 32, 2072–2081. [Google Scholar] [CrossRef]
- Zhang, C.; She, Y.; Li, T.; Zhao, F.; Jin, M.; Guo, Y.; Zheng, L.; Wang, S.; Jin, F.; Shao, H.; et al. A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water. Anal. Bioanal. Chem. 2017, 409, 7133–7144. [Google Scholar] [CrossRef]
- Wittmann, C.; Bier, F.F.; Eremin, S.A.; Schmid, R.D. Quantitative analysis of 2, 4-dichlorophenoxyacetic acid in water samples by two immunosensing methods. J. Agric. Food Chem. 1996, 44, 343–350. [Google Scholar] [CrossRef]
- Prusty, A.K.; Bhand, S. A capacitive sensor for 2, 4-D determination in water based on 2, 4-D imprinted polypyrrole coated pencil electrode. Mater. Res. Express 2017, 4, 035306. [Google Scholar] [CrossRef]
- Domínguez-Renedo, O.; Navarro-Cuñado, A.M.; Arnáiz-Lozano, V.; Alonso-Lomillo, M.A. Molecularly imprinted polypyrrole based electrochemical sensor for selective determination of 4-ethylphenol. Talanta 2020, 207, 120351. [Google Scholar] [CrossRef] [PubMed]
- Ait-Touchente, Z.; Sakhraoui, H.E.E.Y.; Fourati, N.; Zerrouki, C.; Maouche, N.; Yaakoubi, N.; Touzani, R.; Chehimi, M.M. High performance zinc oxide nanorod-doped ion imprinted polypyrrole for the selective electrosensing of mercury II ions. Appl. Sci. 2020, 10, 7010. [Google Scholar] [CrossRef]
- Hu, S.; Gao, G.; Liu, Y.; Hu, J.; Song, Y.; Zou, X. An Electrochemical Sensor Based on ion Imprinted PPy/rGO Composite for Cd (II) Determination in Water. Int. J. Electrochem. Sci. 2019, 14, 11714–11730. [Google Scholar] [CrossRef]
- Mathieu-Scheers, E.; Bouden, S.; Grillot, C.; Nicolle, J.; Warmont, F.; Bertagna, V.; Cagnon, B.; Vautrin-Ul, C. Trace anthracene electrochemical detection based on electropolymerized-molecularly imprinted polypyrrole modified glassy carbon electrode. J. Electroanal. Chem. 2019, 848, 113253. [Google Scholar] [CrossRef]
- El Hassani, N.E.A.; Bouchikhi, B.; El Bari, N. Recent development of an electrochemical imprinted sensor for the detection of trace-level of unmetabolized aflatoxin B2 in dairy milk. J. Electroanal. Chem. 2020, 865, 114123. [Google Scholar] [CrossRef]
- Onur Uygun, Z.; Ertuğrul Uygun, H.D. A Novel Chronoimpedimetric Glucose Sensor in Real Blood Samples Modified by Glucose-imprinted Pyrrole-Aminophenylboronic Acid Modified Screen Printed Electrode. Electroanalysis 2020, 32, 226–229. [Google Scholar] [CrossRef]
- Guo, H.; Gui, R.; Jin, H.; Wang, Z. Facile construction of reduced graphene oxide–carbon dot complex embedded molecularly imprinted polymers for dual-amplification and selective electrochemical sensing of rutoside. New J. Chem. 2017, 41, 9977–9983. [Google Scholar] [CrossRef]
- Sullivan, N.; Sun, Y.; Sattentau, Q.; Thali, M.; Wu, D.; Denisova, G.; Gershoni, J.; Robinson, J.; Moore, J.; Sodroski, J. CD4-induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: Consequences for virus entry and neutralization. J. Virol. 1998, 72, 4694–4703. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, Z.; Yadegari, H.; Heli, H. A molecularly imprinted electrochemical nanobiosensor for prostate specific antigen determination. Anal. Biochem. 2019, 566, 116–125. [Google Scholar] [CrossRef]
- Rebelo, T.S.; Costa, R.; Brandão, A.T.; Silva, A.F.; Sales, M.G.F.; Pereira, C.M. Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum. Anal. Chim. Acta 2019, 1082, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Niwa, H.; Ojika, M.; Wakamatsu, K.; Yamada, K.; Hirono, I.; Matsushita, K. Ptaquiloside, a novel norsesquiterpene glucoside from bracken, Pteridium aquilinum var. latiusculum. Tetrahedron Lett. 1983, 24, 4117–4120. [Google Scholar] [CrossRef]
- Beluomini, M.A.; da Silva, J.L.; Stradiotto, N.R. Amperometric determination of myo-inositol by using a glassy carbon electrode modified with molecularly imprinted polypyrrole, reduced graphene oxide and nickel nanoparticles. Microch. Acta 2018, 185, 170. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Cai, H.; Cookson, M.R.; Gwinn-Hardy, K.; Singleton, A. Genetics of Parkinson’s disease and parkinsonism. Annal. Neurol. 2006, 60, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Y.; Xu, J.; Wen, Y. Electropolymerized molecularly imprinted polypyrrole decorated with black phosphorene quantum dots onto poly (3, 4-ethylenedioxythiophene) nanorods and its voltammetric sensing of vitamin C. J. Electroanal. Chem. 2018, 814, 153–160. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Ye, X.; Wu, T.; Deng, H.; Wu, P.; Li, C. Sensing platform for neuron specific enolase based on molecularly imprinted polymerized ionic liquids in between gold nanoarrays. Biosens. Bioelectr. 2018, 99, 34–39. [Google Scholar] [CrossRef] [PubMed]
Template | Operating Range | LOD 1 | Matrix | Interferents | Methods | Ref |
---|---|---|---|---|---|---|
Kanamycin | 5 nM–1 M | 5 nM | Milk sample, kanamycin standard sample | - | impedimetric analysis | [21] |
Methimazole | 7 M–6 mM | 3 M | Water, Human blood serum | Thiacetamide, Thiourea, Benzimidazole, Diazepam, 4-dimetylaminopyridine, ticlopidine hydrochloride | DPV | [29] |
Mebeverine | 10 nm–1 M, 10 M–1 mM | 8.6 nM | spiked human blood serum | asdonpezile, chloroquine, levertiracetan, phexophenadine, naproxen, mequinol | DPV | [30] |
Celecoxib | 5 nM–20 M | 2.34 nM | spiked human blood serum | fluoxetine, pantoprazole, tetracycline, acetaminophen, famotidine, letrozole | CV, DPV | [31] |
Tetracycline | 1–20 M | 0.65 M | spiked in shrimp sample | amoxicillin, chloramphenicol, oxytetracycline | DPV | [32] |
Sulfasalazine | 1.0–10 ppm | 0.265 ppm | pharmaceutical sample | ascorbic acid, sulfadiazine, sulfamethoxazole | DPV | [33] |
Template | Operating Range | LOD | Matrix | Interferents | Methods | Ref |
---|---|---|---|---|---|---|
Glyphosate | 5–800 ng/mL | 0.27 ng/mL | spiked cucumber samples, spiked tap water | chlorpyrifos, aldicarb, aminomethyl phosphonic acid | DPV | [34] |
2,4-Dichloro- phenoxyacetic acid | 0.06–1.25 g/L | 0.02 g/L | spiked drinking water | atrazine | EIS | [36] |
4-Ethylphenol | 0.2–34.8 M | 0.2 M | wine samples | 4-ethylguaiacol, dopamine | DPV | [37] |
Bisphenol A | 0.05–20 M | 8 nm | tap water. bottle water, drinking bottle, polycarbonate | estradiol, epinephrine, dibutyphtalate, gallic acid, caffeic acid, 4-chlorophenol, bisphenol F | [7] | |
Melamine | 4.0–240 nM | 0.83 nM | spiked milk | glycine, phenylalanine, tryptophan, histidine, tyrosine, ascorbic acid | EIS | [22] |
Hg2+ | - | 1 pM | water/KCl | lead, cadmium and copper ions | Square wave woltammetry | [38] |
Cd2+ | 1–100 g/L | 0.26 g/L | water samples | Mn2+, Cr6+, Mg2+, Zn2+, Cr3+ | Square wave anodic stripping woltammetry | [39] |
Anthracene | - | 12 nM | mineral water | sodium, potassium and calcium cations, nitrate, sulfate, chloride and carbonate anions | square wave voltammetry | [40] |
Aflatoxin B2 | - | 0.2 fg/mL | milk | - | EIS, DPV | [41] |
Template | Operating Range | LOD | Matrix | Interferents | Method 1 | Ref |
---|---|---|---|---|---|---|
2-Isopropoxyphenol | 0.21–75 M | 0.21 M | biological fluids | chlorferon, disulfoton-sulfone, fenamiphos, strychnine | DPV | [23] |
Glucose | 20–800 mg/dL | 6.064 mg/dL | serum sample | - | CI 2 | [42] |
Rutin | 0.01–6.5 M | 3 nM | human serum | apigenin, primuletin, luteolin | DPV | [43] |
Glycoprotein gp120 | 0.1–50 ng/mL | 0.015 ng/mL | spiked human serum | HIV-p24, hCH, CEA | DPV | [24] |
Amyloid A | 0.01–200 ng/mL | 5 pg/mL | spiked milk | -lactalbumin, -lactoglobulin, casein, bovine serum albumin | DPV | [19] |
Prostate-specific antigen | 0.01–4 ng/mL | 2 pg/mL | human serum | - | DPV | [45] |
Carbohydrate antigen (CA-125) | 0.01–500 U/mL | 0.01 U/mL | serum | compound found in artificial serum | square wave voltammetry | [46] |
Myo-inositol | 0.1–10 nM | 76 pM | sugarcane vinasse | L-arbitol, D-mannitol, erythritol, glucose | DPV | [48] |
-Synuclein | 0.1 pg/mL–8 ng/mL | 0.035 pg/mL | blood | - | DPV | [25] |
Ascorbic acid | 0.01–4 mM | 3.3 M | soft drinks | - | DPV | [50] |
Neuron-specific enolase | 0.01–1 ng/mL | 2.6 pg/mL | Clinical serum samples | - | DPV | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glosz, K.; Stolarczyk, A.; Jarosz, T. Electropolymerised Polypyrroles as Active Layers for Molecularly Imprinted Sensors: Fabrication and Applications. Materials 2021, 14, 1369. https://doi.org/10.3390/ma14061369
Glosz K, Stolarczyk A, Jarosz T. Electropolymerised Polypyrroles as Active Layers for Molecularly Imprinted Sensors: Fabrication and Applications. Materials. 2021; 14(6):1369. https://doi.org/10.3390/ma14061369
Chicago/Turabian StyleGlosz, Karolina, Agnieszka Stolarczyk, and Tomasz Jarosz. 2021. "Electropolymerised Polypyrroles as Active Layers for Molecularly Imprinted Sensors: Fabrication and Applications" Materials 14, no. 6: 1369. https://doi.org/10.3390/ma14061369
APA StyleGlosz, K., Stolarczyk, A., & Jarosz, T. (2021). Electropolymerised Polypyrroles as Active Layers for Molecularly Imprinted Sensors: Fabrication and Applications. Materials, 14(6), 1369. https://doi.org/10.3390/ma14061369