Electropolymerised Polypyrroles as Active Layers for Molecularly Imprinted Sensors: Fabrication and Applications
Abstract
:1. Introduction
2. Theoretical Considerations
3. Sensor Fabrication Methods
4. Detection of Contaminants
4.1. Detection of Antibiotics and Other Drugs
4.2. Detection of Other Contaminants
5. Detection of Bio-Active Substances
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharabi, D.; Paz, Y. Preferential photodegradation of contaminants by molecular imprinting on titanium dioxide. Appl. Catal. B Environ. 2010, 95, 169–178. [Google Scholar] [CrossRef]
- Yan, H.; Row, K.H. Characteristic and synthetic approach of molecularly imprinted polymer. Int. J. Mol. Sci. 2006, 7, 155–178. [Google Scholar] [CrossRef] [Green Version]
- Zembrzuska, D.; Kalecki, J.; Cieplak, M.; Lisowski, W.; Borowicz, P.; Noworyta, K.; Sharma, P.S. Electrochemically initiated co-polymerization of monomers of different oxidation potentials for molecular imprinting of electroactive analyte. Sens. Actuators B Chem. 2019, 298, 126884. [Google Scholar] [CrossRef]
- Abunahla, H.; Mohammad, B.; Alazzam, A.; Abi Jaoude, M.; Al-Qutayri, M.; Hadi, S.A.; Al-Sarawi, S.F. MOMSense: Metal-oxide-metal elementary glucose sensor. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, Y.; Lin, L.; Chen, H.; Zhao, M. Au nanoparticles@ metal organic framework/polythionine loaded with molecularly imprinted polymer sensor: Preparation, characterization, and electrochemical detection of tyrosine. J. Electr. Chem. 2020, 863, 114052. [Google Scholar] [CrossRef]
- Khadem, M.; Faridbod, F.; Norouzi, P.; Foroushani, A.R.; Ganjali, M.R.; Yarahmadi, R.; Shahtaheri, S.J. Voltammetric Determination of Carbofuran Pesticide in Biological and Environmental Samples Using a Molecularly Imprinted Polymer Sensor, a Multivariate Optimization. J. Anal. Chem. 2020, 75, 669–678. [Google Scholar] [CrossRef]
- Beduk, T.; Lahcen, A.A.; Tashkandi, N.; Salama, K.N. One-step electrosynthesized molecularly imprinted polymer on laser scribed graphene bisphenol a sensor. Sens. Actuators B Chem. 2020, 314, 128026. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Ciocan, V.; Öpik, A.; Syritski, V. Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 2020, 209, 120502. [Google Scholar] [CrossRef]
- Chunta, S.; Suedee, R.; Boonsriwong, W.; Lieberzeit, P.A. Biomimetic sensors targeting oxidized-low-density lipoprotein with molecularly imprinted polymers. Anal. Chim. Acta 2020, 1116, 27–35. [Google Scholar] [CrossRef]
- René, W.; Lenoble, V.; Chioukh, M.; Branger, C. A turn-on fluorescent ion-imprinted polymer for selective and reliable optosensing of lead in real water samples. Sens. Actuators B Chem. 2020, 319, 128252. [Google Scholar] [CrossRef]
- Cormack, P.A.; Elorza, A.Z. Molecularly imprinted polymers: Synthesis and characterisation. J. Chromatogr. B 2004, 804, 173–182. [Google Scholar] [CrossRef]
- Tokonami, S.; Shiigi, H.; Nagaoka, T. Molecularly imprinted overoxidized polypyrrole films for sensor applications from enantiorecognition to trace analysis. In Molecularly Imprinted Sensors; Elsevier: Amsterdam, The Netherlands, 2012; pp. 73–89. [Google Scholar]
- Seyfoddin, A.; Chan, A.; Chen, W.T.; Rupenthal, I.; Waterhouse, G.; Svirskis, D. Electro-responsive macroporous polypyrrole scaffolds for triggered dexamethasone delivery. Eur. J. Phar. Biopharm. 2015, 94, 419–426. [Google Scholar] [CrossRef]
- Zhang, B.; Molino, P.J.; Harris, A.R.; Yue, Z.; Moulton, S.E.; Wallace, G.G. Conductive and protein resistant polypyrrole films for dexamethasone delivery. J. Mater. Chem. B 2016, 4, 2570–2577. [Google Scholar] [CrossRef] [Green Version]
- Sirivisoot, S.; Pareta, R.; Webster, T.J. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology 2011, 22, 085101. [Google Scholar] [CrossRef] [PubMed]
- Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 2000, 29, 283–293. [Google Scholar]
- Zhang, Y.; Huang, W.; Yin, X.; Sarpong, K.A.; Zhang, L.; Li, Y.; Zhao, S.; Zhou, H.; Yang, W.; Xu, W. Computer-aided design and synthesis of molecular imprinting polymers based on doubly oriented functional multiwalled carbon nanotubes for electrochemically sensing bisphenol A. React. Funct. Polym. 2020, 157, 104767. [Google Scholar] [CrossRef]
- Bagdžiūnas, G. Theoretical design of molecularly imprinted polymers based on polyaniline and polypyrrole for detection of tryptophan. Mol. Syst. Des. Eng. 2020, 5, 1504–1512. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Ren, J.; Han, F.; Yu, X.; Tang, F.; Xue, F.; Chen, W.; Yang, J.; Jiang, Y.; et al. Facile construction of a molecularly imprinted polymer–based electrochemical sensor for the detection of milk amyloid A. Microchim. Acta 2020, 187, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Do, P.T.; Do, P.Q.; Nguyen, H.B.; Le, T.H.; Pham, H.V.; Nguyen, T.L.; Tran, Q.H. A highly sensitive electrode modified with graphene, gold nanoparticles, and molecularly imprinted over-oxidized polypyrrole for electrochemical determination of dopamine. J. Mol. Liquids 2014, 198, 307–312. [Google Scholar] [CrossRef]
- Işık, D.; Şahin, S.; Caglayan, M.O.; Üstündağ, Z. Electrochemical impedimetric detection of kanamycin using molecular imprinting for food safety. Microchem. J. 2021, 160, 105713. [Google Scholar] [CrossRef]
- Shamsipur, M.; Moradi, N.; Pashabadi, A. Coupled electrochemical-chemical procedure used in construction of molecularly imprinted polymer-based electrode: A highly sensitive impedimetric melamine sensor. J. Solid State Electrochem. 2018, 22, 169–180. [Google Scholar] [CrossRef]
- Qader, B.; Baron, M.; Hussain, I.; Gonzalez-Rodriguez, J. Electrochemical determination of 2-isopropoxyphenol in glassy carbon and molecularly imprinted poly-pyrrole electrodes. J. Electroanal. Chem. 2018, 821, 16–21. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, C.; Wang, M.; Wang, L.S. Sensitive electrochemical detection of gp120 based on the combination of NBD-556 and gp120. Talanta 2019, 196, 486–492. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, Q.; Liu, C.; Wang, L. A nanospherical conjugated microporous polymer-graphene nanosheets modified molecularly imprinted electrochemical sensor for high sensitivity detection of α-Synuclein. J. Electroanal. Chem. 2020, 862, 113994. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.T.; Carmeli, Y.; Falagas, M.T.; Giske, C.T.; Harbarth, S.; Hindler, J.T.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, J.; García-Galán, M.J.; Day, J.W.; Boopathy, R.; White, J.R.; Wallace, S.; Hunter, R.G. A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresource Technol. 2020, 307, 123228. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zou, M.; Han, Y.; Zhang, F.; Li, J.; Zhu, X. Analysis of the kanamycin in raw milk using the suspension array. J. Chem. 2012, 2013. [Google Scholar] [CrossRef] [Green Version]
- Nezhadali, A.; Mehri, L.; Shadmehri, R. Determination of methimazole based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite sensor. Mater. Sci. Eng. C 2018, 85, 225–232. [Google Scholar] [CrossRef]
- Nezhadali, A.; Bonakdar, G.A. Multivariate optimization of mebeverine analysis using molecularly imprinted polymer electrochemical sensor based on silver nanoparticles. J. Food Drug Anal. 2019, 27, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Nezhadali, A.; Sadeghzadeh, S. Experimental design-artificial neural network-genetic algorithm optimization and computer-assisted design of celecoxib molecularly imprinted polymer/carbon nanotube sensor. J. Electroanal. Chem. 2017, 795, 32–40. [Google Scholar] [CrossRef]
- Devkota, L.; Nguyen, L.T.; Vu, T.T.; Piro, B. Electrochemical determination of tetracycline using AuNP-coated molecularly imprinted overoxidized polypyrrole sensing interface. Electrochim. Acta 2018, 270, 535–542. [Google Scholar] [CrossRef]
- Koseoglu, T.S.; Durgut, A. Development of a Novel Molecularly Imprinted Overoxidized Polypyrrole Electrode for the Determination of Sulfasalazine. Electroanalysis 2020, 32, 2072–2081. [Google Scholar] [CrossRef]
- Zhang, C.; She, Y.; Li, T.; Zhao, F.; Jin, M.; Guo, Y.; Zheng, L.; Wang, S.; Jin, F.; Shao, H.; et al. A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water. Anal. Bioanal. Chem. 2017, 409, 7133–7144. [Google Scholar] [CrossRef]
- Wittmann, C.; Bier, F.F.; Eremin, S.A.; Schmid, R.D. Quantitative analysis of 2, 4-dichlorophenoxyacetic acid in water samples by two immunosensing methods. J. Agric. Food Chem. 1996, 44, 343–350. [Google Scholar] [CrossRef]
- Prusty, A.K.; Bhand, S. A capacitive sensor for 2, 4-D determination in water based on 2, 4-D imprinted polypyrrole coated pencil electrode. Mater. Res. Express 2017, 4, 035306. [Google Scholar] [CrossRef]
- Domínguez-Renedo, O.; Navarro-Cuñado, A.M.; Arnáiz-Lozano, V.; Alonso-Lomillo, M.A. Molecularly imprinted polypyrrole based electrochemical sensor for selective determination of 4-ethylphenol. Talanta 2020, 207, 120351. [Google Scholar] [CrossRef] [PubMed]
- Ait-Touchente, Z.; Sakhraoui, H.E.E.Y.; Fourati, N.; Zerrouki, C.; Maouche, N.; Yaakoubi, N.; Touzani, R.; Chehimi, M.M. High performance zinc oxide nanorod-doped ion imprinted polypyrrole for the selective electrosensing of mercury II ions. Appl. Sci. 2020, 10, 7010. [Google Scholar] [CrossRef]
- Hu, S.; Gao, G.; Liu, Y.; Hu, J.; Song, Y.; Zou, X. An Electrochemical Sensor Based on ion Imprinted PPy/rGO Composite for Cd (II) Determination in Water. Int. J. Electrochem. Sci. 2019, 14, 11714–11730. [Google Scholar] [CrossRef]
- Mathieu-Scheers, E.; Bouden, S.; Grillot, C.; Nicolle, J.; Warmont, F.; Bertagna, V.; Cagnon, B.; Vautrin-Ul, C. Trace anthracene electrochemical detection based on electropolymerized-molecularly imprinted polypyrrole modified glassy carbon electrode. J. Electroanal. Chem. 2019, 848, 113253. [Google Scholar] [CrossRef]
- El Hassani, N.E.A.; Bouchikhi, B.; El Bari, N. Recent development of an electrochemical imprinted sensor for the detection of trace-level of unmetabolized aflatoxin B2 in dairy milk. J. Electroanal. Chem. 2020, 865, 114123. [Google Scholar] [CrossRef]
- Onur Uygun, Z.; Ertuğrul Uygun, H.D. A Novel Chronoimpedimetric Glucose Sensor in Real Blood Samples Modified by Glucose-imprinted Pyrrole-Aminophenylboronic Acid Modified Screen Printed Electrode. Electroanalysis 2020, 32, 226–229. [Google Scholar] [CrossRef]
- Guo, H.; Gui, R.; Jin, H.; Wang, Z. Facile construction of reduced graphene oxide–carbon dot complex embedded molecularly imprinted polymers for dual-amplification and selective electrochemical sensing of rutoside. New J. Chem. 2017, 41, 9977–9983. [Google Scholar] [CrossRef]
- Sullivan, N.; Sun, Y.; Sattentau, Q.; Thali, M.; Wu, D.; Denisova, G.; Gershoni, J.; Robinson, J.; Moore, J.; Sodroski, J. CD4-induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: Consequences for virus entry and neutralization. J. Virol. 1998, 72, 4694–4703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdani, Z.; Yadegari, H.; Heli, H. A molecularly imprinted electrochemical nanobiosensor for prostate specific antigen determination. Anal. Biochem. 2019, 566, 116–125. [Google Scholar] [CrossRef]
- Rebelo, T.S.; Costa, R.; Brandão, A.T.; Silva, A.F.; Sales, M.G.F.; Pereira, C.M. Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum. Anal. Chim. Acta 2019, 1082, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Niwa, H.; Ojika, M.; Wakamatsu, K.; Yamada, K.; Hirono, I.; Matsushita, K. Ptaquiloside, a novel norsesquiterpene glucoside from bracken, Pteridium aquilinum var. latiusculum. Tetrahedron Lett. 1983, 24, 4117–4120. [Google Scholar] [CrossRef]
- Beluomini, M.A.; da Silva, J.L.; Stradiotto, N.R. Amperometric determination of myo-inositol by using a glassy carbon electrode modified with molecularly imprinted polypyrrole, reduced graphene oxide and nickel nanoparticles. Microch. Acta 2018, 185, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, J.; Cai, H.; Cookson, M.R.; Gwinn-Hardy, K.; Singleton, A. Genetics of Parkinson’s disease and parkinsonism. Annal. Neurol. 2006, 60, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Y.; Xu, J.; Wen, Y. Electropolymerized molecularly imprinted polypyrrole decorated with black phosphorene quantum dots onto poly (3, 4-ethylenedioxythiophene) nanorods and its voltammetric sensing of vitamin C. J. Electroanal. Chem. 2018, 814, 153–160. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Ye, X.; Wu, T.; Deng, H.; Wu, P.; Li, C. Sensing platform for neuron specific enolase based on molecularly imprinted polymerized ionic liquids in between gold nanoarrays. Biosens. Bioelectr. 2018, 99, 34–39. [Google Scholar] [CrossRef] [PubMed]
Template | Operating Range | LOD 1 | Matrix | Interferents | Methods | Ref |
---|---|---|---|---|---|---|
Kanamycin | 5 nM–1 M | 5 nM | Milk sample, kanamycin standard sample | - | impedimetric analysis | [21] |
Methimazole | 7 M–6 mM | 3 M | Water, Human blood serum | Thiacetamide, Thiourea, Benzimidazole, Diazepam, 4-dimetylaminopyridine, ticlopidine hydrochloride | DPV | [29] |
Mebeverine | 10 nm–1 M, 10 M–1 mM | 8.6 nM | spiked human blood serum | asdonpezile, chloroquine, levertiracetan, phexophenadine, naproxen, mequinol | DPV | [30] |
Celecoxib | 5 nM–20 M | 2.34 nM | spiked human blood serum | fluoxetine, pantoprazole, tetracycline, acetaminophen, famotidine, letrozole | CV, DPV | [31] |
Tetracycline | 1–20 M | 0.65 M | spiked in shrimp sample | amoxicillin, chloramphenicol, oxytetracycline | DPV | [32] |
Sulfasalazine | 1.0–10 ppm | 0.265 ppm | pharmaceutical sample | ascorbic acid, sulfadiazine, sulfamethoxazole | DPV | [33] |
Template | Operating Range | LOD | Matrix | Interferents | Methods | Ref |
---|---|---|---|---|---|---|
Glyphosate | 5–800 ng/mL | 0.27 ng/mL | spiked cucumber samples, spiked tap water | chlorpyrifos, aldicarb, aminomethyl phosphonic acid | DPV | [34] |
2,4-Dichloro- phenoxyacetic acid | 0.06–1.25 g/L | 0.02 g/L | spiked drinking water | atrazine | EIS | [36] |
4-Ethylphenol | 0.2–34.8 M | 0.2 M | wine samples | 4-ethylguaiacol, dopamine | DPV | [37] |
Bisphenol A | 0.05–20 M | 8 nm | tap water. bottle water, drinking bottle, polycarbonate | estradiol, epinephrine, dibutyphtalate, gallic acid, caffeic acid, 4-chlorophenol, bisphenol F | [7] | |
Melamine | 4.0–240 nM | 0.83 nM | spiked milk | glycine, phenylalanine, tryptophan, histidine, tyrosine, ascorbic acid | EIS | [22] |
Hg2+ | - | 1 pM | water/KCl | lead, cadmium and copper ions | Square wave woltammetry | [38] |
Cd2+ | 1–100 g/L | 0.26 g/L | water samples | Mn2+, Cr6+, Mg2+, Zn2+, Cr3+ | Square wave anodic stripping woltammetry | [39] |
Anthracene | - | 12 nM | mineral water | sodium, potassium and calcium cations, nitrate, sulfate, chloride and carbonate anions | square wave voltammetry | [40] |
Aflatoxin B2 | - | 0.2 fg/mL | milk | - | EIS, DPV | [41] |
Template | Operating Range | LOD | Matrix | Interferents | Method 1 | Ref |
---|---|---|---|---|---|---|
2-Isopropoxyphenol | 0.21–75 M | 0.21 M | biological fluids | chlorferon, disulfoton-sulfone, fenamiphos, strychnine | DPV | [23] |
Glucose | 20–800 mg/dL | 6.064 mg/dL | serum sample | - | CI 2 | [42] |
Rutin | 0.01–6.5 M | 3 nM | human serum | apigenin, primuletin, luteolin | DPV | [43] |
Glycoprotein gp120 | 0.1–50 ng/mL | 0.015 ng/mL | spiked human serum | HIV-p24, hCH, CEA | DPV | [24] |
Amyloid A | 0.01–200 ng/mL | 5 pg/mL | spiked milk | -lactalbumin, -lactoglobulin, casein, bovine serum albumin | DPV | [19] |
Prostate-specific antigen | 0.01–4 ng/mL | 2 pg/mL | human serum | - | DPV | [45] |
Carbohydrate antigen (CA-125) | 0.01–500 U/mL | 0.01 U/mL | serum | compound found in artificial serum | square wave voltammetry | [46] |
Myo-inositol | 0.1–10 nM | 76 pM | sugarcane vinasse | L-arbitol, D-mannitol, erythritol, glucose | DPV | [48] |
-Synuclein | 0.1 pg/mL–8 ng/mL | 0.035 pg/mL | blood | - | DPV | [25] |
Ascorbic acid | 0.01–4 mM | 3.3 M | soft drinks | - | DPV | [50] |
Neuron-specific enolase | 0.01–1 ng/mL | 2.6 pg/mL | Clinical serum samples | - | DPV | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glosz, K.; Stolarczyk, A.; Jarosz, T. Electropolymerised Polypyrroles as Active Layers for Molecularly Imprinted Sensors: Fabrication and Applications. Materials 2021, 14, 1369. https://doi.org/10.3390/ma14061369
Glosz K, Stolarczyk A, Jarosz T. Electropolymerised Polypyrroles as Active Layers for Molecularly Imprinted Sensors: Fabrication and Applications. Materials. 2021; 14(6):1369. https://doi.org/10.3390/ma14061369
Chicago/Turabian StyleGlosz, Karolina, Agnieszka Stolarczyk, and Tomasz Jarosz. 2021. "Electropolymerised Polypyrroles as Active Layers for Molecularly Imprinted Sensors: Fabrication and Applications" Materials 14, no. 6: 1369. https://doi.org/10.3390/ma14061369
APA StyleGlosz, K., Stolarczyk, A., & Jarosz, T. (2021). Electropolymerised Polypyrroles as Active Layers for Molecularly Imprinted Sensors: Fabrication and Applications. Materials, 14(6), 1369. https://doi.org/10.3390/ma14061369