Calorimetric Studies of Magnesium-Rich Mg-Pd Alloys
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schlapbach, L.; Zuttel, A. Hydrogen-Storage Materials for Mobile Applications. Nature 2002, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Moradi, R.; Groth, K.M. Hydrogen Storage and Delivery: Review of the State of the Art Technologies and Risk and Reliability Analysis. Int. J. Hydrog. Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen Storage for Mobility: A Review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef] [PubMed]
- Hadjixenophontos, E.; Dematteis, E.M.; Berti, N.; Wołczyk, A.R.; Huen, P.; Brighi, M.; Le, T.T.; Santoru, A.; Payandeh, S.; Peru, F. A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity. Inorganics 2020, 8, 17. [Google Scholar] [CrossRef]
- Crivello, J.-C.; Dam, B.; Denys, R.; Dornheim, M.; Grant, D.; Huot, J.; Jensen, T.R.; De Jongh, P.; Latroche, M.; Milanese, C. Review of Magnesium Hydride-Based Materials: Development and Optimisation. Appl. Phys. A 2016, 122, 97. [Google Scholar] [CrossRef]
- Prabhukhot, P.R.; Wagh Mahesh, M.; Gangal Aneesh, C. A Review on Solid State Hydrogen Storage Material. Adv. Energy Power 2016, 11–22. [Google Scholar] [CrossRef]
- Baran, A.; Polański, M. Magnesium-Based Materials for Hydrogen Storage—A Scope Review. Materials 2020, 13, 3993. [Google Scholar] [CrossRef]
- Webb, C.J. A Review of Catalyst-Enhanced Magnesium Hydride as a Hydrogen Storage Material. J. Phys. Chem. Solids 2015, 84, 96–106. [Google Scholar] [CrossRef]
- Reilly, J.J., Jr.; Wiswall, R.H., Jr. The Reaction of Hydrogen with Alloys of Magnesium and Copper1. Inorg. Chem. 1967, 6, 2220–2223. [Google Scholar] [CrossRef]
- Reilly, J.J., Jr.; Wiswall, R.H., Jr. Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4. Inorg. Chem. 1968, 7, 2254–2256. [Google Scholar] [CrossRef]
- Fadonougbo, J.O.; Jung, J.-Y.; Suh, J.-Y.; Lee, Y.-S.; Shim, J.-H.; Cho, Y.W. Low Temperature Formation of Mg2FeH6 by Hydrogenation of Ball-Milled Nano-Crystalline Powder Mixture of Mg and Fe. Mater. Des. 2017, 135, 239–245. [Google Scholar] [CrossRef]
- Fadonougbo, J.O.; Jung, J.Y.; Suh, J.-Y.; Lee, Y.-S.; Shim, J.-H.; Fleury, E.; Cho, Y.W. The Role of Fe Particle Size and Oxide Distribution on the Hydrogenation Properties of Ball-Milled Nano-Crystalline Powder Mixtures of Fe and Mg. J. Alloys Compd. 2019, 806, 1039–1046. [Google Scholar] [CrossRef]
- Sun, Z.; Lu, X.; Nyahuma, F.M.; Yan, N.; Xiao, J.; Su, S.; Zhang, L. Enhancing Hydrogen Storage Properties of MgH2 by Transition Metals and Carbon Materials: A Brief Review. Front. Chem. 2020, 8, 552. [Google Scholar] [CrossRef]
- Dufour, J.; Huot, J. Rapid Activation, Enhanced Hydrogen Sorption Kinetics and Air Resistance in Laminated Mg–Pd 2.5 at.%. J. Alloys Compd. 2007, 439, 5–7. [Google Scholar] [CrossRef]
- Huot, J.; Enoki, H.; Akiba, E. Synthesis, Phase Transformation, and Hydrogen Storage Properties of Ball-Milled TiV0.9Mn1.1. J. Alloys Compd. 2008, 453, 203–209. [Google Scholar] [CrossRef]
- Huot, J.; Yonkeub, A.; Dufour, J. Rietveld Analysis of Neutron Powder Diffraction of Mg6Pd Alloy at Various Hydriding Stages. J. Alloys Compd. 2009, 475, 168–172. [Google Scholar] [CrossRef]
- Fadonougbo, J.O.; Kim, H.-J.; Suh, B.-C.; Suh, J.-Y.; Lee, Y.-S.; Shim, J.-H.; Yim, C.D.; Cho, Y.W. Kinetics and Thermodynamics of Near Eutectic Mg-Mg2Ni Composites Produced by Casting Process. Int. J. Hydrogen Energy 2020, 45, 29009–29022. [Google Scholar] [CrossRef]
- Ouyang, L.; Liu, F.; Wang, H.; Liu, J.; Yang, X.-S.; Sun, L.; Zhu, M. Magnesium-Based Hydrogen Storage Compounds: A Review. J. Alloys Compd. 2020, 832. [Google Scholar] [CrossRef]
- Crivello, J.C.; Denys, R.V.; Dornheim, M.; Felderhoff, M.; Grant, D.M.; Huot, J.; Jensen, T.R.; de Jongh, P.; Latroche, M.; Walker, G.S.; et al. Mg-Based Compounds for Hydrogen and Energy Storage. Appl. Phys. A 2016, 122. [Google Scholar] [CrossRef]
- Pistidda, C. Metals in Hydrogen Technology. Metals 2020, 10, 456. [Google Scholar] [CrossRef]
- Floriano, R.; Leiva, D.R.; Melo, G.C.; Ishikawa, T.T.; Huot, J.; Kaufman, M.; Figueroa, S.J.A.; Mendoza-Zélis, L.A.; Damonte, L.C.; Botta, W.J. Low Temperature Rolling of AZ91 Alloy for Hydrogen Storage. Int. J. Hydrogen Energy 2017, 42, 29394–29405. [Google Scholar] [CrossRef]
- Skryabina, N.; Aptukov, V.; Romanov, P.; Fruchart, D.; de Rango, P.; Girard, G.; Grandini, C.; Sandim, H.; Huot, J.; Lang, J.; et al. Microstructure Optimization of Mg-Alloys by the ECAP Process Including Numerical Simulation, SPD Treatments, Characterization, and Hydrogen Sorption Properties. Molecules 2018, 24, 89. [Google Scholar] [CrossRef]
- Huot, J.; Tousignant, M. Effect of Cold Rolling on Metal Hydrides. Mater. Trans. 2019, 60, 1571–1576. [Google Scholar] [CrossRef]
- Xin, G.; Yang, J.; Fu, H.; Li, W.; Zheng, J.; Li, X. Excellent Hydrogen Sorption Kinetics of Thick Mg–Pd Films under Mild Conditions by Tailoring Their Structures. R. Soc. Chem. 2013, 3, 4167–4170. [Google Scholar] [CrossRef]
- Urretavizcaya, G.; Sarmiento Chávez, A.C.; Castro, F.J. Hydrogen Absorption and Desorption in the Mg-Ag System. J. Alloys Compd. 2014, 611, 202–209. [Google Scholar] [CrossRef]
- Si, T.Z.; Zhang, J.B.; Liu, D.M.; Zhang, Q.A. A New Reversible Mg3Ag-H2 System for Hydrogen Storage. J. Alloys Compd. 2013, 581, 246–249. [Google Scholar] [CrossRef]
- Dufour, J.; Huot, J. Study of Mg6Pd Alloy Synthesized by Cold Rolling. J. Alloys Compd. 2007, 446–447, 147–151. [Google Scholar] [CrossRef]
- Nayeb-Hashemi, A.A.; Clark, J.B. The Mg-Pd (Magnesium-Palladium) System. Bull. Alloy Phase Diagr. 1985, 6, 164–167. [Google Scholar] [CrossRef]
- Savitsky, E.M.; Terekhova, V.F.; Birun, N.A. Equilibrium Diagram of the Mg−Pd System. Russ. J. Inorg. Chem. 1962, 7, 1228–1231. [Google Scholar]
- Ferro, R. Research on the Alloys of Noble Metals with the More Electropositive Elements: III. Micrographic and X-ray Examination of Some Magnesium-Platinum Alloys. J. Less Common Met. 1959, 1, 424–438. [Google Scholar] [CrossRef]
- Kripyakevich, P.I.; Gladyshevskii, E.I. Crystal Structures of Some Compounds of Palladium with Magnesium. Sov. Phys. Crystallogr. 1960, 5, 552–554. [Google Scholar]
- Makongo, J.P.A.; Prots, Y.; Burkhardt, U.; Niewa, R.; Kudla, C.; Kreiner, G. A Case Study of Complex Metallic Alloy Phases: Structure and Disorder Phenomena of Mg–Pd Compounds. Philos. Mag. 2006, 86, 427–433. [Google Scholar] [CrossRef]
- Okamoto, H. Mg-Pd (Magnesium-Palladium). J. Phase Equilibria Diffus. 2010, 31, 407–408. [Google Scholar] [CrossRef]
- Fernandez, J.F.; Ares, J.R.; Cuevas, F.; Bodega, J.; Leardini, F.; Sanchez, C. A Thermodynamic Study of the Hydrogenation of the Pseudo-Binary Mg6Pd0.5Ni0.5 Intermetallic Compound. Intermetallics 2010, 18, 233–241. [Google Scholar] [CrossRef]
- Fernandez, J.F.; Widomb, M.; Cuevas, F.; Ares, J.R.; Bodega, J.; Leardini, F.; Mihalkovi, M.; Sánchez, C. First-Principles Phase Stability Calculations and Estimation of Finite Temperature Effects on Pseudo-Binary Mg6(PdxNi1−x) Compounds. Intermetallics 2011, 19, 502–510. [Google Scholar] [CrossRef]
- Delsante, S.; Novakovic, R.; Gagliolo, A.; Borzone, G. Thermodynamic Investigation on the Mg–Pd Intermetallic Phases. J. Chem. Thermodyn. 2019, 139, 1–8. [Google Scholar] [CrossRef]
- Dębski, A.; Pęska, M.; Dworecka-Wójcik, J.; Terlicka, S.; Gąsior, W.; Gierlotka, W.; Polański, M. Structural and Calorimetric Studies of Magnesium-Rich Mg-PD alloys. J. Alloys Compd. 2021, 858. [Google Scholar] [CrossRef]
- Gierlotka, W.; Dębski, A.; Terlicka, S.; Gąsior, W.; Pęska, M.; Polański, M. Insight into Phase Stability in the Mg-Pd System: The Ab Initio Calculations. J. Phase Equilibria Diffus. 2020, 41, 681–686. [Google Scholar] [CrossRef]
- Colinet, C. High Temperature Calorimetry: Recent Developments. J. Alloys Compd. 1995, 220, 76–87. [Google Scholar] [CrossRef]
- Dȩbski, A.; Dȩbski, R.; Ga̧sior, W.; Góral, A. Formation Enthalpy of Intermetallic Phases from Ag-Ca System. Experiment vs. Modeling. J. Alloys Compd. 2014, 610, 701–705. [Google Scholar] [CrossRef]
- Dębski, A.; Terlicka, S.; Budziak, A.; Gąsior, W. Calorimetric and XRD Studies of Ag-Rich Alloys from Ag-Li System. J. Alloys Compd. 2018, 732, 210–217. [Google Scholar] [CrossRef]
- Dębski, A.; Braga, M.H.; Terlicka, S.; Gąsior, W.; Góral, A. Formation Enthalpy of Ga-Li Intermetallic Phases. Experiment vs. Calculations. J. Chem. Thermodyn. 2018, 124, 101–106. [Google Scholar] [CrossRef]
- Chen, S.L.; Daniel, S.; Zhang, F.; Chang, Y.A.; Yan, X.-Y.; Xie, F.-Y.; Schmid-Fetzer, R.; Oates, W.A. The PANDAT Software Package and Its Applications. Calphad Comput. Coupling Phase Diagr. Thermochem. 2002, 26, 175–188. [Google Scholar] [CrossRef]
- Dinsdale, A.T. SGTE Data for Pure Elements. Calphad 1991, 15, 317–425. [Google Scholar] [CrossRef]
- De Boer, F.R.; Boom, R.; Mattens, W.C.M.; Miedema, A.R.; Niessen, A.K. Cohesion in Metals: Transition Metal Alloys (Cohesion and Structure); Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Dębski, A.; Dębski, R.; Gąsior, W. New Features of ENTALL Database: Comparison of Experimental and Model Formation Enthalpies. Arch. Metall. Mater. 2014, 59, 1337–1343. [Google Scholar] [CrossRef]
- Rzyman, K.; Moser, Z.; Gachon, J.C. Calorimetric Studies of the Enthalpies of Formation of Al3Ti, AlTi, AlTi3 and Al2Ti Compounds. Arch. Metall. Materials 2004, 49, 545–563. [Google Scholar]
Chemical Name | Source | Purity (Mass %) | Analysis Method |
---|---|---|---|
Magnesium | Sigma Aldrich | 99.9 | Certified purity |
Palladium | Safina a.s. | 99.95 | Certified purity |
Argon | Air Products | 99.9999 | Certified purity |
No. | Alloys (Phases) | Annealing Temperature | Annealing Time (h) |
---|---|---|---|
1 | 14.6 at.% Pd | 663 | 84 |
2 | 19.4 at.% Pd | 663 | 84 |
3 | 29.3 at.% Pd | 663 | 72 |
4 | 35.5 at.% Pd | 663 | 72 |
Measurement No. | Dropped Mass of Samples (g) | At.% of Mg in Al Bath | Heat Effects ΔHef (kJ/mol) | |
---|---|---|---|---|
1 | 0.0225 | 0.16 | 21.4 | −8.6 |
2 | 0.0397 | 0.45 | 21.2 | −8.8 |
3 | 0.0276 | 0.65 | 21.6 | −8.5 |
4 | 0.0414 | 0.95 | 21.7 | −8.3 |
Average | - | - | 21.5 | −8.6 |
Standard error | - | - | 1.1 | 1.1 |
Measurement No. | Dropped Amount of Samples (g) | At.% of Pd in Al Bath | Heat Effects ΔHef (kJ/mol) | |
---|---|---|---|---|
1 | 0.0822 | 0.14 | −154.6 | −186.9 |
2 | 0.0850 | 0.28 | −154.1 | −186.4 |
3 | 0.0860 | 0.42 | −154.4 | −186.7 |
4 | 0.0894 | 0.57 | −154.7 | −187.0 |
5 | 0.0861 | 0.71 | −154.6 | −186.9 |
Average | - | - | −154.5 | −186.8 |
Standard deviation | - | - | 1.1 | 1.1 |
Alloys | T (K) | Sample No. | ΔHef (kJ/mol of atoms) | ΔfH (kJ/mol of atoms) |
---|---|---|---|---|
14.6 at.% Pd (Mg6Pd) | 298 | 1 | 24.8 | −29.0 |
2 | 23.4 | −27.6 | ||
3 | 22.7 | −27.0 | ||
4 | 23.4 | −27.7 | ||
5 | 25.3 | −29.5 | ||
6 | 22.9 | −27.2 | ||
Average | 23.8 | −28.0 | ||
Standard error | 1.2 | 1.2 | ||
19.4 at.% Pd ~(ε) | 298 | 1 | 19.3 | −31.9 |
2 | 21.4 | −34.1 | ||
3 | 19.2 | −31.9 | ||
4 | 20.0 | −32.7 | ||
Average | 20.0 | −32.6 | ||
Standard error | 1.6 | 1.6 | ||
29.3 at.% Pd ~(Mg5Pd2) | 298 | 1 | 17.6 | −47.7 |
2 | 16.4 | −46.5 | ||
3 | 16.7 | −46.8 | ||
4 | 16.3 | −46.4 | ||
Average | 16.7 | −46.8 | ||
Standard error | 1.4 | 1.4 | ||
35.5 at.% Pd ~(Mg2Pd) | 298 | 1 | 15.5 | −56.5 |
2 | 16.1 | −57.1 | ||
3 | 14.6 | −55.6 | ||
4 | 13.8 | −54.9 | ||
Average | 15.0 | −56.0 | ||
Standard error | 1.6 | 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dębski, A.; Terlicka, S.; Gąsior, W.; Gierlotka, W.; Pęska, M.; Dworecka-Wójcik, J.; Polański, M. Calorimetric Studies of Magnesium-Rich Mg-Pd Alloys. Materials 2021, 14, 680. https://doi.org/10.3390/ma14030680
Dębski A, Terlicka S, Gąsior W, Gierlotka W, Pęska M, Dworecka-Wójcik J, Polański M. Calorimetric Studies of Magnesium-Rich Mg-Pd Alloys. Materials. 2021; 14(3):680. https://doi.org/10.3390/ma14030680
Chicago/Turabian StyleDębski, Adam, Sylwia Terlicka, Władysław Gąsior, Wojciech Gierlotka, Magda Pęska, Julita Dworecka-Wójcik, and Marek Polański. 2021. "Calorimetric Studies of Magnesium-Rich Mg-Pd Alloys" Materials 14, no. 3: 680. https://doi.org/10.3390/ma14030680
APA StyleDębski, A., Terlicka, S., Gąsior, W., Gierlotka, W., Pęska, M., Dworecka-Wójcik, J., & Polański, M. (2021). Calorimetric Studies of Magnesium-Rich Mg-Pd Alloys. Materials, 14(3), 680. https://doi.org/10.3390/ma14030680