The Effect of TiN and DLC Anti-Wear Coatings on the Tribofilm Formation and Frictional Heat Phenomena in Coated Metals vs. WC-Co
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
CAE | cathodic arc deposition, |
CVD | chemical vapor deposition, |
ΔT | the temperature of each friction pair (°C), understood as: ΔT = Ta − Tp, where Ta is the temperature of the friction pair recorded during the wear tests, and Tp is the room temperature (21 °C), |
ΔVt | volumetric wear of discs (mm3), |
DLC | diamond-like-carbon, |
EDX | energy dispersive X-ray spectroscopy, |
F | normal load (10 N), |
FIB | focused ion beam, |
MS | magnetron sputtering, |
µ, COF | coefficient of friction, |
PACVD | plasma assisted chemical vapor deposition, |
PVD | physical vapor deposition, |
Ra | the arithmetic average of the absolute values of the profile height deviations from the mean line (µm), |
SEM | scanning electron microscopy, |
T | friction force (N), |
TiN | titanium nitride. |
References
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Solis, J.; Zhao, H.; Wang, C.; Verduzco, J.A.; Bueno, A.S.; Neville, A. Tribological performance of an H-DLC coating prepared by PECVD. Appl. Surf. Sci. 2016, 383, 222–232. [Google Scholar] [CrossRef]
- Huang, X.; Etsion, I.; Shao, T. Effects of elastic modulus mismatch between coating and substrate on the friction and wear properties of TiN and TiAlN coating systems. Wear 2015, 338–339, 54–61. [Google Scholar] [CrossRef]
- Ma, G.; Wang, L.; Gao, H.; Zhang, J.; Reddyhoff, T. The friction coefficient evolution of a TiN coated contact during sliding wear. Appl. Surf. Sci. 2015, 245, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Çaha, I.; Alves, A.C.; Affonço, L.J.; Lisboa-Filho, P.N.; da Silva, J.H.D.; Rocha, L.A.; Pinto, A.M.P.; Toptan, F. Corrosion and tribocorrosion behaviour of titanium nitride thin films grown on titanium under different deposition times. Surf. Coat. Technol. 2019, 374, 878–888. [Google Scholar] [CrossRef]
- Cassar, G.; Batista Wilson, J.C.; Banfield, S.; Housden, J.; Matthews, A.; Leyland, A. A study of the reciprocating-sliding wear performance of plasma surface treated titanium alloy. Wear 2010, 269, 60–70. [Google Scholar] [CrossRef]
- Verma, P.C.; Menapace, L.; Bonfanti, A.; Ciudin, R.; Gialanella, S.; Straffelini, G. Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear 2015, 322–323, 251–258. [Google Scholar] [CrossRef]
- Qian, X.K.; Liu, M.H.; Lu, P.F. Numerical simulation study of the influence of silicon carbide impurities on the temperature field of graphite heating rods. Ind. Heat. 2011, 40, 44–46. [Google Scholar] [CrossRef]
- Nair, R.P.; Griffin, D.; Randall, N.X. The use of the pin-on-disk tribology test method to study three unique industrial applications. Wear 2009, 267, 823–827. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, Z. Fundamental theories and basic principles of triboelectric effect: A review. Friction 2019, 7, 2–17. [Google Scholar] [CrossRef]
- Wei, C.; Lin, J.F.; Jiang, T.-H.; Ai, C.-F. Tribological characteristics of titanium nitride and titanium carbonitride multilayer films: Part II. The effect of coating sequence on tribological properties. Thin Solid Film. 2001, 381, 104–118. [Google Scholar] [CrossRef]
- Grandin, M.; Wiklund, U. Influence of mechanical and electrical load on a copper/copper-graphite sliding electrical contact. Tribol. Int. 2018, 121, 1–9. [Google Scholar] [CrossRef]
- Łępicka, M.; Ciszewski, A.; Golak, K.; Grądzka-Dahlke, M. A Comparative Study of Friction and Wear Processes of Model Metallic Biomaterials Including Registration of Friction-Induced Temperature Response of a Tribological Pair. Materials 2019, 12, 4163. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.S.; Day, A.J. Investigation of disc/pad interface temperatures in friction braking. Wear 2007, 262, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.C.; Ciudin, R.; Bonfanti, A.; Aswath, P.; Straffelini, G.; Gialanella, S. Role of the friction layer in the high-temperature pin-on-disc study of a brake material. Wear 2016, 346–347, 56–65. [Google Scholar] [CrossRef]
- Chey, S.K.; Tian, P.; Tian, Y. Estimation of real contact area during sliding friction from interface temperature. AIP Adv. 2016, 6, 065227. [Google Scholar] [CrossRef] [Green Version]
- Straffelini, G.; Verlinski, S.; Verma, P.C.; Valota, G.; Gialanella, S. Wear and Contact Temperature Evolution in Pin-on-Disc Tribotesting of Low-Metallic Friction Material Sliding Against Pearlitic Cast Iron. Tribol. Lett. 2016, 62, 36. [Google Scholar] [CrossRef]
- Ming, Q.; Zhang, Y.-Z.; Shangguan, B.; Du, S.-M.; Yan, Z.-W. The relationships between tribological behaviour and heat-transfer capability of Ti6Al4V alloys. Wear 2007, 263, 653–657. [Google Scholar] [CrossRef]
- Santecchia, E.; Hamouda, A.M.S.; Musharavati, F.; Zalnezhad, E.; Cabibbo, M.; Spigarelli, S. Wear resistance investigation of titanium nitride-based coatings. Ceram. Int. 2015, 41, 10349–10379. [Google Scholar] [CrossRef]
- Fedirko, V.M.; Pohrelyuk, I.M.; Luk’yanenko, O.H.; Lavrys, S.M.; Kindrachuk, M.V.; Dukhota, O.I.; Tisov, O.V.; Zahrebel’nyi, V.V. Thermodiffusion Saturation of the Surface of VT22 Titanium Alloy from a Controlled Oxygen–Nitrogen-Containing Atmosphere in the Stage of Aging. Mater. Sci. 2018, 53, 691–701. [Google Scholar] [CrossRef]
- Marchuk, V.; Kindrachuk, M.; Tisov, O.; Kornienko, A.; Radko, O.; Kharchenko, V. Stress-strained state of textured surfaces with selectively indented regions. Funct. Mater. 2019, 26, 773–778. [Google Scholar] [CrossRef]
- Łępicka, M.; Grądzka-Dahlke, M. Direct Current and Pulsed Direct Current Plasma Nitriding of Ferrous Materials a Critical Review. Acta Mech. Autom. 2016, 10, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Grill, A. Diamond-like carbon: State of the art. Diam. Relat. Mater. 1999, 8, 428–434. [Google Scholar] [CrossRef]
- Cui, W.; Qin, G.; Duan, J.; Wang, H. A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility. Mater. Sci. Eng. C 2016, 71, 520–528. [Google Scholar] [CrossRef]
- Koller, A.W. The Friction Coefficient of Soft Contact Lens Surfaces in Relation to Comfort and Performance. Ph.D. Thesis, City University London, London, UK, 2014. [Google Scholar]
- Feng, Y.-P.; Zhang, L.; Ke, R.-X.; Wana, Q.-L.; Wang, Z.; Lu, Z.-H. Thermal stability and oxidation behavior of AlTiN, AlCrN and AlCrSiWN coatings. Int. J. Refract. Hard Met. 2014, 43, 241–249. [Google Scholar] [CrossRef]
- Sue, J.A.; Chang, T.P. Friction and wear behavior of titanium nitride, zirconium nitride and chromium nitride coatings at elevated temperatures. Surf. Coat. Technol. 1995, 76–77, 61–69. [Google Scholar] [CrossRef]
- Ni, W.; Cheng, Y.-T.; Weiner, A.M.; Perry, A.T. Tribological behavior of diamond-like-carbon (DLC) coatings against aluminum alloys at elevated temperatures. Surf. Coat. Technol. 2006, 201, 3229–3234. [Google Scholar] [CrossRef]
- Available online: https://virgamet.pl/00h17n14m2-1-4404-1-4401-aisi-316-316l-tp316-tp316l-stal-nierdzewna (accessed on 22 May 2021).
- de Viteri, V.S.; Barandika, M.G.; de Gopegui, U.R.; Bayón, R.; Zubizarreta, C.; Fernández, X.; Igartua, A.; Agullo-Rueda, F. Characterization of Ti-C-N coatings deposited on Ti6Al4V for biomedical applications. J. Inorg. Biochem. 2012, 117, 359–366. [Google Scholar] [CrossRef]
- Shen, H.H.; Liu, L.; Liu, X.Z.; Guo, Q.; Meng, T.X.; Wang, Z.X.; Yang, H.J.; Liu, X.P. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying. Appl. Surf. Sci. 2016, 388, 126–132. [Google Scholar] [CrossRef]
- Holmber, K.; Matthews, A. Chapter 5–Coating characterization and evaluation. In Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering, 2nd ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Huang, X.; Xiao, K.; Fang, X.; Xiong, Z.; Wei, L.; Zhu, P.; Li, X. Oxidation behavior of 316L austenitic stainless steel in high temperature air with long-term exposure. Mater. Res. Express 2020, 7, 066517. [Google Scholar] [CrossRef]
- Szkliniarz, A.; Szkliniarz, W. Effect of Carbon Content on the Microstructure and Properties of Ti-6Al-4V Alloy. Arch. Metall. Mater. 2020, 3, 1197–1204. [Google Scholar] [CrossRef]
- Derazkola, H.A.; Gil, E.G.; Murillo-Marrodán, A.; Méresse, D. Review on Dynamic Recrystallization of Martensitic Stainless Steels during Hot Deformation: Part I—Experimental Study. Metals 2021, 11, 572. [Google Scholar] [CrossRef]
- Muthukumaran, V.; Selladurai, V.; Nandhakumar, S.; Senthilkumar, M. Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainless steel. Mater. Des. 2010, 31, 2813–2817. [Google Scholar] [CrossRef]
- Wang, S.; Wu, X. Investigation on the microstructure and mechanical properties of Ti–6Al–4V alloy joints with electron beam welding. Mater. Des. 2012, 36, 663–670. [Google Scholar] [CrossRef]
- Akman, E.; Demir, A.; Canel, T.; Sınmazc¸elik, T. Laser welding of Ti6Al4V titanium alloys. J. Mater. Proces. Technol. 2009, 209, 3705–3713. [Google Scholar] [CrossRef]
- Langguth, K.; Kluge, A.; Ryssel, H. Wear of steels after implantation of oxygen ions or oxidation at 670 K. Wear 1992, 155, 343–351. [Google Scholar] [CrossRef]
- Mazurkiewicz, A.; Bielak, S. Właściwości eksploatacyjne powierzchni elementów stalowych po obróbce elektrodrążeniem. TTS Tech. Transp. Szyn. 2013, 20, 743–752. (In Polish) [Google Scholar]
- Mertens, A.; Reginster, S.; Paydas, H.; Contrepois, Q.; Dormal, T.; Lemaire, O.; Lecomte-Beckers, J. Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: Influence of out-of-equilibrium microstructures. Powder Met. 2014, 57, 184–189. [Google Scholar] [CrossRef]
- Hoag, J.G.; Roach, D.B. Some Physical Properties of Martensitic Stainless Steels; Defense Metals Information Center, Battelle Memorial Institute: West Palm Beach, FL, USA, 1960. [Google Scholar]
- Guimarães, B.; Fernandes, C.M.; Figueiredo, D.; Cerqueira, M.F.; Carvalho, O.; Silva, F.S.; Miranda, G. A novel approach to reduce in-service temperature in WC-Co cutting tools. Ceram. Int. 2020, 46, 3002–3008. [Google Scholar] [CrossRef]
- Samani, M.K.; Ding, X.Z.; Khosravian, N.; Amin-Ahmadi, B.; Yi, Y.; Chen, G.; Neyts, E.C.; Bogaerts, A.; Tay, B.K. Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc. Thin Solid Film. 2015, 578, 133–138. [Google Scholar] [CrossRef]
- Shamsa, M.; Liu, W.L.; Balandin, A.A. Thermal conductivity of diamond-like carbon films. Appl. Phys. Lett. 2006, 89, 161921. [Google Scholar] [CrossRef] [Green Version]
- Moćko, W. Analiza wytężenia zaworu silnikowego wykonanego ze stopu tytanu Ti6Al4V obciążonego mechanicznie i cieplnie. Transport. Samoch. 2014, 4, 55–71. (In Polish) [Google Scholar]
- Wojciechowski, K.T.; Zybała, R.; Mania, R. Application of DLC layers in 3-omega thermal conductivity method. J. Achiev. Mater. Manuf. Eng. 2009, 2, 512–517. [Google Scholar]
- Wang, H.; Webb, T.; Bitler, J.W. Study of thermal expansion and thermal conductivity of cemented WC–Co composite. Int. J. Refract. Hard Met. 2015, 49, 170–177. [Google Scholar] [CrossRef]
- Odabas, D. The Influence of The Temperature on Dry Friction of AISI 3315 Steel Sliding Against AISI 3150 Steel. IOP Conf. Ser. Mater. Sci. Eng. 2018, 295, 012021. [Google Scholar] [CrossRef] [Green Version]
- Ghabchi, A.; Sampath, S.; Holmberg, K.; Varis, T. Damage mechanisms and cracking behavior of thermal sprayed WC–CoCr coating under scratch testing. Wear 2014, 313, 97–105. [Google Scholar] [CrossRef]
- De Oliveira Junior, M.M.; Costa, H.L.; Silva, W.M.; De Mello, J.D.B. Effect of iron oxide debris on the reciprocating sliding wear of tool steels. Wear 2019, 426–427, 1065–1075. [Google Scholar] [CrossRef]
- Moore, M.A. A Preliminary Investigation of Frictional Heating During Wear. Wear 1971, 17, 51–58. [Google Scholar] [CrossRef]
- Saravanan, I.; Perumal, A.; Vettivel, S.C.; Selvakumar, N.; Baradeswaran, A. Optimizing wear behavior of TiN coated SS 316L against Ti alloy using response surface methodology. Mater. Des. 2015, 67, 469–482. [Google Scholar] [CrossRef]
- Wilson, S.; Alpas, T.A. TiN coating wear mechanisms in dry sliding contact against high speed steel. Surf. Coat. Technol. 1998, 108–109, 369–376. [Google Scholar] [CrossRef]
- Dhandapani, V.S.; Thangavel, E.; Arumugam, M.; Shin, K.S.; Veeraraghavan, V.; Yau, S.Y.; Kim, C.; Kim, D.-E. Effect of Ag content on the microstructure, tribological and corrosion. Surf. Coat. Technol. 2014, 240, 128–136. [Google Scholar] [CrossRef]
Cr | Ni | Mo | C | Si | Mn | P | S | Fe |
---|---|---|---|---|---|---|---|---|
16.7 | 12.6 | 2.1 | <0.03 | <0.6 | 1.6 | <0.03 | <0.03 | balance |
Al | V | C | O | Ti |
---|---|---|---|---|
6.0 | 3.9 | 0.03 | 0.15 | balance |
C | Cr | Mo | Si | Mn | Fe |
---|---|---|---|---|---|
0.95 ÷ 1.20 | 16.0 ÷ 18.0 | 0.75 | 1.0 | 1.0 | balance |
316L | Ti6Al4V | 440B |
---|---|---|
195 | 320 ÷ 360 | 770 |
Series No. | Disc Material | Surface Modification | Ra (µm) | Number of Samples Tested |
---|---|---|---|---|
S1 | 316L | none (uncoated) | 0.015 ± 0.002 | 5 |
S2 | TiN | 0.021 ± 0.004 | 5 | |
S3 | DLC | 0.017 ± 0.002 | 5 | |
S4 | Ti6Al4V | none (uncoated) | 0.024 ± 0.003 | 5 |
S5 | TiN | 0.026 ± 0.004 | 5 | |
S6 | DLC | 0.024 ± 0.002 | 5 | |
S7 | 440B | none (uncoated) | 0.017 ± 0.001 | 5 |
S8 | TiN | 0.023 ± 0.003 | 5 | |
S9 | DLC | 0.018 ± 0.002 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łępicka, M.; Tsybrii, Y.; Kiejko, D.; Golak, K. The Effect of TiN and DLC Anti-Wear Coatings on the Tribofilm Formation and Frictional Heat Phenomena in Coated Metals vs. WC-Co. Materials 2021, 14, 3342. https://doi.org/10.3390/ma14123342
Łępicka M, Tsybrii Y, Kiejko D, Golak K. The Effect of TiN and DLC Anti-Wear Coatings on the Tribofilm Formation and Frictional Heat Phenomena in Coated Metals vs. WC-Co. Materials. 2021; 14(12):3342. https://doi.org/10.3390/ma14123342
Chicago/Turabian StyleŁępicka, Magdalena, Yurii Tsybrii, Daniel Kiejko, and Karol Golak. 2021. "The Effect of TiN and DLC Anti-Wear Coatings on the Tribofilm Formation and Frictional Heat Phenomena in Coated Metals vs. WC-Co" Materials 14, no. 12: 3342. https://doi.org/10.3390/ma14123342
APA StyleŁępicka, M., Tsybrii, Y., Kiejko, D., & Golak, K. (2021). The Effect of TiN and DLC Anti-Wear Coatings on the Tribofilm Formation and Frictional Heat Phenomena in Coated Metals vs. WC-Co. Materials, 14(12), 3342. https://doi.org/10.3390/ma14123342