Reversible Barrier Switching of ZnO/RuO2 Schottky Diodes
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RF | Radiofrequency |
ITO | Sn-doped InO |
AZO | Al-doped ZnO |
XPS | X-ray photoelectron spectroscopy |
IV | Current-voltage |
References
- Erhart, P.; Albe, K. First-principles study of migration mechanisms and diffusion of oxygen in zinc oxide. Phys. Rev. B 2006, 73, 115207. [Google Scholar] [CrossRef]
- Allen, M.W.; Alkaisi, M.M.; Durbin, S.M. Metal Schottky diodes on Zn-polar and O-polar bulk ZnO. Appl. Phys. Lett. 2006, 89, 103520. [Google Scholar] [CrossRef]
- Allen, M.W.; Durbin, S.M. Influence of oxygen vacancies on Schottky contacts to ZnO. Appl. Phys. Lett. 2008, 92, 122110. [Google Scholar] [CrossRef]
- Allen, M.W.; Mendelsberg, R.J.; Reeves, R.J.; Durbin, S.M. Oxidized noble metal Schottky contacts to n-type ZnO. Appl. Phys. Lett. 2009, 94, 103508. [Google Scholar] [CrossRef]
- Lajn, A.; Wenckstern, H.V.; Zhang, Z.; Czekalla, C.; Biehne, G.; Lenzner, J.; Hochmuth, H.; Lorenz, M.; Grundmann, M.; Wickert, S.; et al. Properties of reactively sputtered Ag, Au, Pd, and Pt Schottky contacts on n-type ZnO. J. Vac. Sci. Technol. B 2009, 27, 1769–1773. [Google Scholar] [CrossRef]
- Müller, S.; von Wenckstern, H.; Schmidt, F.; Splith, D.; Heinhold, R.; Allen, M.; Grundmann, M. Method of choice for fabrication of high-quality ZnO-based Schottky diodes. J. Appl. Phys. 2014, 116, 12. [Google Scholar] [CrossRef]
- Karsthof, R.; Räcke, P.; von Wenckstern, H.; Grundmann, M. Semi-transparent NiO/ZnO UV photovoltaic cells. Phys. Stat. Sol. A 2016, 213, 30–37. [Google Scholar] [CrossRef]
- Hyland, A.M.; Makin, R.A.; Durbin, S.M.; Allen, M.W. Giant improvement in the rectifying performance of oxidized Schottky contacts to ZnO. J. Appl. Phys. 2017, 121, 10. [Google Scholar] [CrossRef]
- Wang, Z.L. Progress in Piezotronics and Piezo-Phototronics. Adv. Mater. 2012, 24, 4632–4646. [Google Scholar] [CrossRef]
- Keil, P.; Frömling, T.; Klein, A.; Rödel, J.; Novak, N. The piezotronic effect on Schottky barrier at the metal-ZnO single crystal interface. J. Appl. Phys. 2017, 121, 155701. [Google Scholar] [CrossRef]
- Mosbacker, H.L.; Strzhemechny, Y.M.; White, B.D.; Smith, P.E.; Look, D.C.; Reynolds, D.C.; Litton, C.W.; Brillson, L.J. Role of near-surface states in ohmic-Schottky conversion of Au contacts to ZnO. Appl. Phys. Lett. 2005, 87, 012102. [Google Scholar] [CrossRef]
- Brillson, L.J.; Mosbacker, H.L.; Hetzer, M.J.; Strzhemechny, Y.; Jessen, G.H.; Look, D.C.; Cantwell, G.; Zhang, J.; Song, J.J. Dominant effect of near-interface native point defects on ZnO Schottky barriers. Appl. Phys. Lett. 2007, 90, 102116. [Google Scholar] [CrossRef]
- Ágoston, P.; Albe, K.; Nieminen, R.M.; Puska, M.J. Intrinsic n-Type Behavior in Transparent Conducting Oxides: A Comparative Hybrid-Functional Study of In2O3, SnO2, and ZnO. Phys. Rev. Lett. 2009, 103, 245501. [Google Scholar] [CrossRef]
- Körber, C.; Harvey, S.P.; Mason, T.O.; Klein, A. Barrier Heights at the SnO2/Pt Interface: In-situ Photoemission and Electrical Properties. Surf. Sci. 2008, 602, 3246–3252. [Google Scholar] [CrossRef]
- Chen, F.; Schafranek, R.; Wu, W.; Klein, A. Reduction induced Fermi level pinning at the interfaces between Pb(Zr,Ti)O3 and Pt, Cu and Ag metal electrodes. J. Phys. D. Appl. Phys. 2011, 44, 255301. [Google Scholar] [CrossRef]
- Wendel, P.; Periyannan, S.; Jaegermann, W.; Klein, A. Polarization dependence of ZnO Schottky barriers revealed by photoelectron spectroscopy. Phys. Rev. Mater. 2020, 4, 084604. [Google Scholar] [CrossRef]
- Klein, A. Interface Properties of Dielectric Oxides. J. Am. Ceram. Soc. 2016, 99, 369–387. [Google Scholar] [CrossRef]
- Schultz, T.; Vogt, S.; Schlupp, P.; von Wenckstern, H.; Koch, N.; Grundmann, M. Influence of Oxygen Deficiency on the Rectifying Behavior of Transparent-Semiconducting-Oxide–Metal Interfaces. Phys. Rev. Appl. 2018, 9, 064001. [Google Scholar] [CrossRef]
- Michel, J.; Splith, D.; Rombach, J.; Papadogianni, A.; Berthold, T.; Krischok, S.; Grundmann, M.; Bierwagen, O.; von Wenckstern, H.; Himmerlich, M. Processing Strategies for High-Performance Schottky Contacts on n-Type Oxide Semiconductors: Insights from In2O3. ACS Appl. Mater. Interfaces 2019, 11, 27073–27087. [Google Scholar] [CrossRef]
- Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 2020, 15, 529–544. [Google Scholar] [CrossRef]
- Park, J. Neuromorphic Computing Using Emerging Synaptic Devices: A Retrospective Summary and an Outlook. Electronics 2020, 9, 1414. [Google Scholar] [CrossRef]
- Strubell, E.; Ganesh, A.; McCallum, A. Energy and Policy Considerations for Deep Learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics; Association for Computational Linguistics: Florence, Italy, 2019; pp. 3645–3650. [Google Scholar]
- Oh, S.I.; Rani, J.R.; Hong, S.M.; Jang, J.H. Self-rectifying bipolar resistive switching memory based on an iron oxide and graphene oxide hybrid. Nanoscale 2017, 9, 15314–15322. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zheng, G.; Tian, B.; Dkhil, B.; Duan, C. Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv. 2020, 2, 1811–1827. [Google Scholar] [CrossRef]
- Shi, T.; Wang, R.; Wu, Z.; Sun, Y.; An, J.; Liu, Q. A Review of Resistive Switching Devices: Performance Improvement, Characterization, and Applications. Small Struct. 2021, 2, 2000109. [Google Scholar] [CrossRef]
- Casa Branca, N.; Deuermeier, J.; Martins, J.; Carlos, E.; Pereira, M.; Martins, R.; Fortunato, E.; Kiazadeh, A. 2D Resistive Switching Based on Amorphous Zinc–Tin Oxide Schottky Diodes. Adv. Electron. Mater. 2020, 6, 1900958. [Google Scholar] [CrossRef]
- Pereira, M.; Deuermeier, J.; Nogueira, R.; Carvalho, P.A.; Martins, R.; Fortunato, E.; Kiazadeh, A. Noble-Metal-Free Memristive Devices Based on IGZO for Neuromorphic Applications. Adv. Electron. Mater. 2020, 6, 2000242. [Google Scholar] [CrossRef]
- Silva, C.; Martins, J.; Deuermeier, J.; Pereira, M.E.; Rovisco, A.; Barquinha, P.; Goes, J.; Martins, R.; Fortunato, E.; Kiazadeh, A. Towards Sustainable Crossbar Artificial Synapses with Zinc-Tin Oxide. Electron. Mater. 2021, 2, 105–115. [Google Scholar] [CrossRef]
- Kim, K.M.; Zhang, J.; Graves, C.; Yang, J.J.; Choi, B.J.; Hwang, C.S.; Li, Z.; Williams, R.S. Low-Power, Self-Rectifying, and Forming-Free Memristor with an Asymmetric Programing Voltage for a High-Density Crossbar Application. Nano Lett. 2016, 16, 6724–6732. [Google Scholar] [CrossRef]
- Wang, W.; Wang, R.; Shi, T.; Wei, J.; Cao, R.; Zhao, X.; Wu, Z.; Zhang, X.; Lu, J.; Xu, H.; et al. A Self-Rectification and Quasi-Linear Analogue Memristor for Artificial Neural Networks. IEEE Electron Device Lett. 2019, 40, 1407–1410. [Google Scholar] [CrossRef]
- Kuzmichev, D.S.; Chernikova, A.G.; Kozodaev, M.G.; Markeev, A.M. Resistance Switching Peculiarities in Nonfilamentary Self-Rectified TiN/Ta2O5/Ta and TiN/HfO2/Ta2O5/Ta Stacks. Phys. Status Solidi A 2020, 217, 1900952. [Google Scholar] [CrossRef]
- Choi, S.; Kim, Y.; Van Nguyen, T.; Jeong, W.H.; Min, K.; Choi, B.J. Low-Power Self-Rectifying Memristive Artificial Neural Network for Near Internet-of-Things Sensor Computing. Adv. Electron. Mater. 2021, 2100050, 2100050. [Google Scholar] [CrossRef]
- Deyu, G.K.; Hunka, J.; Roussel, H.; Brötz, J.; Bellet, D.; Klein, A. Electrical Properties of Low-Temperature Processed Sn-Doped In2O3 Thin Films: The Role of Microstructure and Oxygen Content and the Potential of Defect Modulation Doping. Materials 2019, 12, 2232. [Google Scholar] [CrossRef]
- Chen, F.; Klein, A. Polarization dependence of Schottky barrier heights at interfaces of ferroelectrics determined by photoelectron spectroscopy. Phys. Rev. B 2012, 86, 094105. [Google Scholar] [CrossRef]
- Ellmer, K.; Welzel, T. Reactive magnetron sputtering of transparent conductive oxide thin films: Role of energetic particle (ion) bombardment. J. Mater. Res. 2012, 27, 765–779. [Google Scholar] [CrossRef]
- Erhart, P.; Klein, A.; Albe, K. First-principles study on the structure and stability of oxygen related point defects in zinc oxide. Phys. Rev. B 2005, 72, 085213. [Google Scholar] [CrossRef]
- Ellmer, K. Electrical Properties. In Transparent Conductive Zinc Oxide; Ellmer, K., Klein, A., Rech, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 35–78. [Google Scholar]
- Lany, S.; Zunger, A. Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors. Phys. Rev. B 2005, 72, 035215. [Google Scholar] [CrossRef]
- Funck, C.; Bäumer, C.; Wiefels, S.; Hennen, T.; Waser, R.; Hoffmann-Eifert, S.; Dittmann, R.; Menzel, S. Comprehensive model for the electronic transport in Pt/SrTiO3 analog memristive devices. Phys. Rev. B 2020, 102, 035307. [Google Scholar] [CrossRef]
- Wang, J.J.; Huang, H.B.; Bayer, T.J.M.; Moballegh, A.; Cao, Y.; Klein, A.; Dickey, E.C.; Irving, D.L.; Randall, C.A.; Chen, L.Q. Defect Chemistry and Resistance Degradation in Fe-doped SrTiO3 Single Crystal. Acta Mater. 2016, 108, 229–240. [Google Scholar] [CrossRef]
Ref. | Year | Mechanism | Rectification | Window | Temperature (°C) |
---|---|---|---|---|---|
This work | 2021 | area-scaling | ≥ | 100 | |
[32] | 2021 | area-scaling | 250 | ||
[31] | 2020 | area-scaling | ≥ | 400 | |
[30] | 2019 | area-scaling | > | ≈25 | RT |
[23] | 2017 | filamentary | > | ≈ | 300 |
[29] | 2016 | area-scaling | > | ≈ | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wendel, P.; Dietz, D.; Deuermeier, J.; Klein, A. Reversible Barrier Switching of ZnO/RuO2 Schottky Diodes. Materials 2021, 14, 2678. https://doi.org/10.3390/ma14102678
Wendel P, Dietz D, Deuermeier J, Klein A. Reversible Barrier Switching of ZnO/RuO2 Schottky Diodes. Materials. 2021; 14(10):2678. https://doi.org/10.3390/ma14102678
Chicago/Turabian StyleWendel, Philipp, Dominik Dietz, Jonas Deuermeier, and Andreas Klein. 2021. "Reversible Barrier Switching of ZnO/RuO2 Schottky Diodes" Materials 14, no. 10: 2678. https://doi.org/10.3390/ma14102678
APA StyleWendel, P., Dietz, D., Deuermeier, J., & Klein, A. (2021). Reversible Barrier Switching of ZnO/RuO2 Schottky Diodes. Materials, 14(10), 2678. https://doi.org/10.3390/ma14102678