Investigation of 2D Rainbow Metamaterials for Broadband Vibration Attenuation
Abstract
1. Introduction
2. Design of 2D Rainbow Metamaterials
3. Numerical Modelling of the Metamaterials
4. Experimental Measurements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elmadih, W.; Chronopoulos, D.; Syam, W.P.; Maskery, I.; Meng, H.; Leach, R.K. Three-dimensional resonating metamaterials for low-frequency vibration attenuation. Sci. Rep. 2019, 9, 11503. [Google Scholar] [CrossRef]
- Reinbold, J.; Frenzel, T.; Münchinger, A.; Wegener, M. The Rise of (Chiral) 3D Mechanical Metamaterials. Materials 2019, 12, 3527. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, R.; Lakshmanan, S. Pneumatically-Actuated Acoustic Metamaterials Based on Helmholtz Resonators. Materials 2020, 13, 1456. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ding, C. Simulated and experimental research of multi-band acoustic metamaterial with a single resonant structure. Materials 2019, 12, 3469. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.Y.; Shen, C.; Jing, Y. Membrane-and plate-type acoustic metamaterials. J. Acoust. Soc. Am. 2016, 139, 3240–3250. [Google Scholar] [CrossRef] [PubMed]
- Cummer, S.A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 1–13. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, J.; Hu, Z. Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators. J. Appl. Phys. 2013, 113, 163511. [Google Scholar] [CrossRef]
- Zuo, S.; Huang, H.; Wu, X.; Zhang, M.; Ni, T. Low-frequency band gap of locally resonant phononic crystals with a dual-base plate. J. Acoust. Soc. Am. 2018, 143, 1326–1332. [Google Scholar] [CrossRef]
- Li, S.; Dou, Y.; Chen, T.; Xu, J.; Li, B.; Zhang, F. Designing a broad locally-resonant bandgap in a phononic crystals. Phys. Lett. A 2019, 383, 1371–1377. [Google Scholar] [CrossRef]
- Larabi, H.; Pennec, Y.; Djafari-Rouhani, B.; Vasseur, J.O. Locally resonant phononic crystals with multilayers cylindrical inclusions. J. Phys. Conf. Ser. 2007, 92, 012112. [Google Scholar] [CrossRef]
- Xiang, H.; Ma, X.; Xiang, J. Optimization for a locally resonant phononic crystal of square spiral with circle inside. IEEE Access 2019, 7, 145988–145995. [Google Scholar] [CrossRef]
- Moscatelli, M.; Comi, C.; Marigo, J.J. Energy Localization through Locally Resonant Materials. Materials 2020, 13, 3016. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.H.; Sun, C.T.; Huang, G.L. On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 2009, 47, 610–617. [Google Scholar] [CrossRef]
- Yao, S.; Zhou, X.; Hu, G. Investigation of the negative-mass behaviors occurring below a cut-off frequency. New J. Phys. 2010, 12, 103025. [Google Scholar] [CrossRef]
- Yang, Z.; Mei, J.; Yang, M.; Chan, N.H.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 2008, 101, 204301. [Google Scholar] [CrossRef] [PubMed]
- Fang, N.; Xi, D.; Xu, J.; Ambati, M.; Srituravanich, W.; Sun, C.; Zhang, X. Ultrasonic metamaterials with negative modulus. Nat. Mater. 2006, 5, 452. [Google Scholar] [CrossRef]
- Ding, C.; Hao, L.; Zhao, X. Two-dimensional acoustic metamaterial with negative modulus. J. Appl. Phys. 2010, 108, 074911. [Google Scholar]
- Wu, Y.; Lai, Y.; Zhang, Z.Q. Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 2011, 107, 105506. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.N.; Hu, G.K.; Huang, G.L.; Sun, C.T. An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett. 2011, 98, 251907. [Google Scholar] [CrossRef]
- Sánchez-Pérez, J.V.; Caballero, D.; Mártinez-Sala, R.; Rubio, C.; Sánchez-Dehesa, J.; Meseguer, F.; Llinares, J.; Gálvez, F. Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 1998, 24, 5325. [Google Scholar] [CrossRef]
- Wen, J.; Wang, G.; Yu, D.; Zhao, H.; Liu, Y.; Wen, X. Study on the vibration band gap and vibration attenuation property of phononic crystals. Sci. China Ser. E Technol. Sci. 2008, 51, 85–99. [Google Scholar] [CrossRef]
- Yu, D.; Wen, J.; Zhao, H.; Liu, Y.; Wen, X. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. J. Sound Vib. 2008, 318, 193–205. [Google Scholar] [CrossRef]
- Liu, P.; Zuo, S.; Wu, X.; Sun, L.; Zhang, Q. Study on the vibration attenuation property of one finite and hybrid piezoelectric phononic crystal beam. Eur. J. Mech. A Solids 2020, 84, 104017. [Google Scholar] [CrossRef]
- Laude, V.; Robert, L.; Daniau, W.; Khelif, A.; Ballandras, S. Surface acoustic wave trapping in a periodic array of mechanical resonators. Appl. Phys. Lett. 2006, 89, 083515. [Google Scholar] [CrossRef]
- Sigalas, M.M. Defect states of acoustic waves in a two-dimensional lattice of solid cylinders. J. Appl. Phys. 1998, 84, 3026–3030. [Google Scholar] [CrossRef]
- Torres, F.; De Espinosa, F.M.; Garcia-Pablos, D.; Garcia, N. Sonic band gaps in finite elastic media: Surface states and localization phenomena in linear and point defects. Phys. Rev. Lett. 1999, 82, 3054. [Google Scholar] [CrossRef]
- Kafesaki, M.; Sigalas, M.M.; Garcia, N. Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials. Phys. Rev. Lett. 2000, 85, 4044. [Google Scholar] [CrossRef]
- Zubtsov, M.; Lucklum, R.; Ke, M.; Oseev, A.; Grundmann, R.; Henning, B.; Hempel, U. 2D phononic crystal sensor with normal incidence of sound. Sens. Actuators A Phys. 2012, 186, 118–124. [Google Scholar] [CrossRef]
- Lucklum, R.; Li, J.; Zubtsov, M. 1D and 2D phononic crystal sensors. Procedia Eng. 2010, 5, 436–439. [Google Scholar] [CrossRef]
- Villa-Arango, S.; Betancur-Sánchez, D.; Torres, R.; Kyriacou, P.; Lucklum, R. Differential phononic crystal sensor: Towards a temperature compensation mechanism for field applications development. Sensors 2017, 17, 1960. [Google Scholar] [CrossRef]
- Chen, L.S.; Kuo, C.H.; Ye, Z. Acoustic imaging and collimating by slabs of sonic crystalsmade from arrays of rigid cylinders in air. Appl. Phys. Lett. 2004, 85, 1072–1074. [Google Scholar] [CrossRef]
- Shi, J.; Lin, S.; Huang, T.J. Wide-band acoustic collimating by phononic crystal composites. Appl. Phys. Lett. 2008, 92, 111901. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Y.; Zhu, X.; Garcia-Vidal, F.J.; Yin, X.; Zhang, W.; Zhang, X. Acoustic rainbow trapping. Sci. Rep. 2013, 3, 1728. [Google Scholar] [CrossRef]
- Celli, P.; Yousefzadeh, B.; Daraio, C.; Gonella, S. Bandgap widening by disorder in rainbow metamaterials. Appl. Phys. Lett. 2019, 114, 091903. [Google Scholar] [CrossRef]
- Meng, H.; Chronopoulos, D.; Fabro, A.T.; Elmadih, W.; Maskery, I. Rainbow metamaterials for broadband multi-frequency vibration attenuation: Numerical analysis and experimental validation. J. Sound Vib. 2020, 465, 115005. [Google Scholar] [CrossRef]
- Meng, H.; Chronopoulos, D.; Fabro, A.T.; Maskery, I.; Chen, Y. Optimal design of rainbow elastic metamaterials. Int. J. Mech. Sci. 2020, 165, 105185. [Google Scholar] [CrossRef]
- Fabro, A.T.; Meng, H.; Chronopoulos, D. Uncertainties in the attenuation performance of a multi-frequency metastructure from additive manufacturing. Mech. Syst. Signal Process. 2020, 138, 106557. [Google Scholar] [CrossRef]
- Achaoui, Y.; Laude, V.; Benchabane, S.; Khelif, A. Local resonances in phononic crystals and in random arrangements of pillars on a surface. J. Appl. Phys. 2013, 114, 104503. [Google Scholar] [CrossRef]
- Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243. [Google Scholar] [CrossRef]
- Abdulhameed, O.; Al-Ahmari, A.; Ameen, W.; Mian, S.H. Additive manufacturing: Challenges, trends, and applications. Adv. Mech. Eng. 2019, 11, 1687814018822880. [Google Scholar] [CrossRef]
- Tasch, D.; Mad, A.; Stadlbauer, R.; Schagerl, M. Thickness dependency of mechanical properties of laser-sintered polyamide lightweight structures. Addit. Manuf. 2018, 23, 25–33. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, Y.; Wen, J.; Yu, D.; Wen, X. Flexural wave band gaps in metamaterial beams with membrane-type resonators: Theory and experiment. J. Phys. D Appl. Phys. 2015, 48, 435305. [Google Scholar] [CrossRef]
- Chen, S.; Wen, J.; Wang, G.; Han, H.; Wen, S. Locally resonant gaps of phononic beams induced by periodic arrays of resonant shunts. Chin. Phys. Lett. 2011, 28, 094301. [Google Scholar] [CrossRef]
- Beli, D.; Fabro, A.T.; Ruzzene, M.; Arruda, J.R.F. Wave attenuation and trapping in 3D printed cantilever-in-mass metamaterials with spatially correlated variability. Sci. Rep. 2019, 9, 5617. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, H.; Chronopoulos, D.; Bailey, N.; Wang, L. Investigation of 2D Rainbow Metamaterials for Broadband Vibration Attenuation. Materials 2020, 13, 5225. https://doi.org/10.3390/ma13225225
Meng H, Chronopoulos D, Bailey N, Wang L. Investigation of 2D Rainbow Metamaterials for Broadband Vibration Attenuation. Materials. 2020; 13(22):5225. https://doi.org/10.3390/ma13225225
Chicago/Turabian StyleMeng, Han, Dimitrios Chronopoulos, Nick Bailey, and Lei Wang. 2020. "Investigation of 2D Rainbow Metamaterials for Broadband Vibration Attenuation" Materials 13, no. 22: 5225. https://doi.org/10.3390/ma13225225
APA StyleMeng, H., Chronopoulos, D., Bailey, N., & Wang, L. (2020). Investigation of 2D Rainbow Metamaterials for Broadband Vibration Attenuation. Materials, 13(22), 5225. https://doi.org/10.3390/ma13225225