Fabrication of Green Diatomite/Chitosan-Based Hybrid Foams with Dye Sorption Capacity
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Porous Diatomite–Chitosan Materials
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, M.; Xu, Y.; Zhang, C.; Rong, H.; Zeng, G. New trends in removing heavy metals from wastewater. Appl. Microbiol. Biotechnol. 2016, 100, 6509–6518. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Diao, Y.; Jain, R.; Rene, E.R.; Dutta, S. Adsorption of Cadmium from Aqueous Solutions onto Coffee Grounds and Wheat Straw: Equilibrium and Kinetic Study. J. Environ. Eng. 2015, 142, C4015014. [Google Scholar] [CrossRef]
- Sanchez, A.G.; Alvarez, E.; Jimenez De Blas, O. Sorption of heavy metals from industrial waste water by low-cost mineral silicates. Clay Miner. 1999, 34, 469–477. [Google Scholar] [CrossRef]
- Meshko, V.; Markovska, L.; Mincheva, M.; Rodrigues, A.E. Adsorption of basic dyes on granular acivated carbon and natural zeolite. Water Res. 2001, 35, 3357–3366. [Google Scholar] [CrossRef]
- Shevade, S.; Ford, R.G. Use of synthetic zeolites for arsenate removal from pollutant water. Water Res. 2004, 38, 3197–3204. [Google Scholar] [CrossRef]
- Verdolotti, L.; Oliviero, M.; Lavorgna, M.; Iannace, S.; Camino, G.; Vollaro, P.; Frache, A. On revealing the effect of alkaline lignin and ammonium polyphosphate additives on fire retardant properties of sustainable zein-based composites. Polym. Degrad. Stab. 2016, 134, 115–125. [Google Scholar] [CrossRef]
- Verdolotti, L.; Salerno, A.; Lamanna, R.; Nunziata, A.; Netti, P.; Iannace, S. A novel hybrid PU-alumina flexible foam with superior hydrophilicity and adsorption of carcinogenic compounds from tobacco smoke. Microporous Mesoporous Mater. 2012, 151, 79–87. [Google Scholar] [CrossRef]
- Verdolotti, L.; Di Maio, E.; Lavorgna, M.; Iannace, S. Hydration-induced reinforcement of rigid polyurethane-cement foams: Mechanical and functional properties. J. Mater. Sci. 2012, 47, 6948–6957. [Google Scholar] [CrossRef]
- Galzerano, B.; Capasso, I.; Verdolotti, L.; Lavorgna, M.; Vollaro, P.; Caputo, D.; Iannace, S.; Liguori, B. Design of sustainable porous materials based on 3D-structured silica exoskeletons, Diatomite: Chemico-physical and functional properties. Mater. Des. 2018, 145, 196–204. [Google Scholar] [CrossRef]
- Yuan, P.; Liu, D.; Zhou, J.; Tian, Q.; Song, Y.; Wei, H.; Wang, S.; Zhou, J.; Deng, L.; Du, P. Identification of the occurrence of minor elements in the structure of diatomaceous opal using FIB and TEM-EDS. Am. Mineral. 2019, 104, 1323–1335. [Google Scholar] [CrossRef]
- Chang, M.Y.; Juang, R.S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J. Colloid Interface Sci. 2004, 278, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wang, C.; Shu, Y.; Yan, X.; Li, L. Utilization of diatomite/chitosan–Fe (III) composite for the removal of anionic azo dyes from wastewater: Equilibrium, kinetics and thermodynamics. Colloids Surf. A Physicochem. Eng. Asp. 2015, 468, 129–139. [Google Scholar] [CrossRef]
- Yuan, P.; Wu, D.Q.; He, H.P.; Lin, Z.Y. The hydroxyl species and acid sites on diatomite surface: A combined IR and Raman study. Appl. Surf. Sci. 2004, 468, 129–139. [Google Scholar] [CrossRef]
- Verdolotti, L.; Lirer, S.; Flora, A.; Evangelista, A.; Iannace, S.; Lavorgna, M. Permeation grouting of a fine-grained pyroclastic soil. Proc. Inst. Civ. Eng.-Ground Improv. 2007, 10, 135–145. [Google Scholar]
- Molvinger, K.; Quignard, F.; Brunel, D.; Boissière, M.; Devoisselle, J.M. Porous chitosan-silica hybrid microspheres as a potential catalyst. Chem. Mater. 2004, 16, 3367–3372. [Google Scholar] [CrossRef]
- Lee, H.-H.; Profile, S.; Kim, H.-J.; Kim, H.-W.; Jang, J.-H.; Lee, E.-J.; Shin-Hee, A.E.; Ae, J.; Kim, H.-E.; Hae-Won, A.E.; et al. Silica xerogel-chitosan nano-hybrids for use as drug eluting bone replacement Intrinsically Bioactive Biomaterials for Regenerative Medicine View project Silica xerogel-chitosan nano-hybrids for use as drug eluting bone replacement. Artic. J. Mater. Sci. Mater. Med. 2009, 21, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Romer, F.; Connell, L.; Walter, C.; Saiz, E.; Yue, S.; Jones, J.R. Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. J. Mater. Chem. B 2015, 3, 7560–7576. [Google Scholar] [CrossRef]
- Salzano de Luna, M.; Ascione, C.; Santillo, C.; Verdolotti, L.; Lavorgna, M.; Buonocore, G.G.; Castaldo, R.; Filippone, G.; Xia, H.; Ambrosio, L. Optimization of dye adsorption capacity and mechanical strength of chitosan aerogels through crosslinking strategy and graphene oxide addition. Carbohydr. Polym. 2019, 211, 195–203. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N.; Mitropoulos, A.C. Chitosan adsorbents for dye removal: A review. Polym. Int. 2017, 66, 1800–1811. [Google Scholar] [CrossRef]
- Salzano de Luna, M.; Altobelli, R.; Gioiella, L.; Castaldo, R.; Scherillo, G.; Filippone, G. Role of polymer network and gelation kinetics on the mechanical properties and adsorption capacity of chitosan hydrogels for dye removal. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 1843–1849. [Google Scholar] [CrossRef]
- Salzano de Luna, M.; Castaldo, R.; Altobelli, R.; Gioiella, L.; Filippone, G.; Gentile, G.; Ambrogi, V. Chitosan hydrogels embedding hyper-crosslinked polymer particles as reusable broad-spectrum adsorbents for dye removal. Carbohydr. Polym. 2017, 177, 347–354. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Li, J.; Li, W.J.; Li, Y. Adsorption of sunset yellow FCF from aqueous solution by chitosan-modified diatomite. Water Sci. Technol. 2015, 72, 1861–1868. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Piscitelli, F.; Buonocore, G.G.; Lavorgna, M.; Verdolotti Pricl, L.S.; Gentile, G.; Mascia, L. Peculiarities in the structure—Properties relationship of epoxy-silica hybrids with highly organic siloxane domains. Polymer 2015, 63, 222–229. [Google Scholar] [CrossRef]
- Salih, S.S.; Mohammed, H.N.; Abdullah, G.H.; Kadhom, M.; Ghosh, T.K. Simultaneous Removal of Cu(II), Cd(II), and Industrial Dye onto a Composite Chitosan Biosorbent. J. Polym. Environ. 2020, 28, 354–365. [Google Scholar] [CrossRef]
- Caner, N.; Sarl, A.; Tüzen, M. Adsorption Characteristics of Mercury(II) Ions from Aqueous Solution onto Chitosan-Coated Diatomite. Ind. Eng. Chem. Res. 2015, 54, 7524–7533. [Google Scholar] [CrossRef]
- Yang, Q.; Gong, L.; Huang, L.; Xie, Q.; Zhong, Y.; Chen, N. Adsorption of as(V) from aqueous solution on chitosan-modified diatomite. Int. J. Environ. Res. Public Health 2020, 17, 429. [Google Scholar] [CrossRef]
- Chen, Q.; Fu, Y.; Xu, X.; Huang, Y.; Hu, J.; Wu, Y. Preparation of new diatomite-chitosan composite materials and their adsorption properties and mechanism of Hg(II). R. Soc. Open Sci. 2017, 4, 170829. [Google Scholar]
- Yazdi, M.G.; Ivanic, M.; Mohamed, A.; Uheida, A. Surface modified composite nanofibers for the removal of indigo carmine dye from polluted water. Rsc Adv. 2018, 8, 24588–24598. [Google Scholar] [CrossRef]
- Maidana, N.I.; Seeligmann, C. Diatomeas (Bacillariophyceae) de Ambientes Acuáticos de Altura de la Provincia de Catamarca, Argentina II. Bol. Soc. Argent. Bot. 2006, 41, 1–13. [Google Scholar]
- Castelló, M.E.; Anbinder, P.S.; Amalvy, J.I.; Peruzzo, P.J. Production and characterization of chitosan and glycerol-chitosan films. MRS Adv. 2018, 3, 3601–3610. [Google Scholar] [CrossRef]
- Verdolotti, L.; Liguori, B.; Capasso, I.; Errico, A.; Caputo, D.; Lavorgna, M.; Iannace, S. Synergistic effect of vegetable protein and silicon addition on geopolymeric foams properties. J. Mater. Sci. 2014, 50, 2459–2466. [Google Scholar] [CrossRef]
- Liguori, B.; Capasso, I.; Romeo, V.; D’Auria, M.; Lavorgna, M.; Caputo, D.; Iannace, S.; Verdolotti, L. Hybrid geopolymeric foams with diatomite addition: Effect on chemico-physical properties. J. Cell. Plast. 2017, 53, 525–536. [Google Scholar] [CrossRef]
- Akyuz, L.; Kaya, M.; Koc, B.; Mujtaba, M.; Ilk, S.; Labidi, J.; Salaberria, A.M.; Cakmak, Y.S.; Yildiz, A. Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties. Int. J. Biol. Macromol. 2017, 105, 1401–1411. [Google Scholar] [CrossRef] [PubMed]
- Finocchio, E.; Baccini, I.; Cristiani, C.; Dotelli, G.; Gallo Stampino, P.; Zampori, L. Hybrid organo-inorganic clay with nonionic interlayers. Mid- and near-IR spectroscopic studies. J. Phys. Chem. A 2011, 115, 7484–7493. [Google Scholar] [CrossRef] [PubMed]
- Daniel-da-Silva, A.L.; Salgueiro, A.M.; Trindade, T. Effects of Au nanoparticles on thermoresponsive genipin-crosslinked gelatin hydrogels. Gold Bull. 2013, 46, 25–33. [Google Scholar] [CrossRef]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo, M. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Tamburaci, S.; Tihminlioglu, F. Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration. Mater. Sci. Eng. C 2017, 80, 222–231. [Google Scholar] [CrossRef]
- Yeng, M.; Husseinsyah, S.; Sam, S.T. Corn Cob Filled Chitosan Biocomposite Films. Adv. Mater. Res. 2013, 747, 649–652. [Google Scholar] [CrossRef]
- De Britto, D.; Campana-Filho, S.P. Kinetics of the thermal degradation of chitosan. Thermochim. Acta 2007, 465, 73–82. [Google Scholar] [CrossRef]
- Innocenzi, P. Infrared spectroscopy of sol-gel derived silica-based films: A spectra-microstructure overview. J. Non Cryst. Solids 2003, 316, 309–319. [Google Scholar] [CrossRef]
- Galzerano, B.; Verdolotti, L.; Capasso, I.; Liguori, B. Setting up the production process of diatomite-based ceramic foams. Mater. Manuf. Process. 2017, 33, 1648–1653. [Google Scholar] [CrossRef]
- Capasso, I.; Liguori, B.; Verdolotti, L.; Caputo, D.; Lavorgna, M.; Tervoort, E. Process strategy to fabricate a hierarchical porosity gradient in diatomite-based foams by 3D printing. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Leal-Cruz, A.L.; Pech-Canul, M.I. In situ synthesis of Si3N4 in the Na2SiF6–N2 system via CVD: Kinetics and mechanism of solid-precursor decomposition. Solid State Ion. 2007, 177, 3529–3536. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Crowley, D. Bioaugmentation of Azo Dyes; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–37. [Google Scholar]
- Galzerano, B.; Aprea, P.; Liguori, B.; Verdolotti, L. Removal of Cd(II) from wastewater by sustainable absorber: Composite diatomite-based foams. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 1981, p. 020120. [Google Scholar]
Hybrids | ρapp kg/m3 | OP% | CP% | WA% |
---|---|---|---|---|
PD | 502 ± 30 | 58.97 ± 5 | 22.38 ± 2 | 124.97 ± 20 |
PDC60 | 533 ± 15 | 57.73 ± 7 | 19.04 ± 3 | 118.15 ± 25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galzerano, B.; Cabello, C.I.; Muñoz, M.; Buonocore, G.G.; Aprea, P.; Liguori, B.; Verdolotti, L. Fabrication of Green Diatomite/Chitosan-Based Hybrid Foams with Dye Sorption Capacity. Materials 2020, 13, 3760. https://doi.org/10.3390/ma13173760
Galzerano B, Cabello CI, Muñoz M, Buonocore GG, Aprea P, Liguori B, Verdolotti L. Fabrication of Green Diatomite/Chitosan-Based Hybrid Foams with Dye Sorption Capacity. Materials. 2020; 13(17):3760. https://doi.org/10.3390/ma13173760
Chicago/Turabian StyleGalzerano, Barbara, Carmen I. Cabello, Mercedes Muñoz, Giovanna G. Buonocore, Paolo Aprea, Barbara Liguori, and Letizia Verdolotti. 2020. "Fabrication of Green Diatomite/Chitosan-Based Hybrid Foams with Dye Sorption Capacity" Materials 13, no. 17: 3760. https://doi.org/10.3390/ma13173760
APA StyleGalzerano, B., Cabello, C. I., Muñoz, M., Buonocore, G. G., Aprea, P., Liguori, B., & Verdolotti, L. (2020). Fabrication of Green Diatomite/Chitosan-Based Hybrid Foams with Dye Sorption Capacity. Materials, 13(17), 3760. https://doi.org/10.3390/ma13173760