The n–Si/p–CVD Diamond Heterojunction
Abstract
:1. Introduction
2. Results and Discussion
2.1. The SEM Micrographs Morphologies
2.2. The Cathodoluminescence Spectroscopy
2.3. The Electrical Properties
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
the current-voltage-temperature charcteristic | |
the current-voltage characterstic | |
HF CVD | Hot Filament Chemicla Vapor Deposition |
SEM | Scanig Electrton Microspoy |
CL | the cathodoluminescence |
FWHM | the full width at half maximum |
References
- Saremi, M.; Hathwar, R.; Dutta, M.; Koeck, F.A.M.; Nemanich, R.J.; Chowdhury, S.; Goodnick, S.M. Analysis of the reverse I-V characteristics of diamond-based PIN diodes. Appl. Phys. Lett. 2017, 111, 043507. [Google Scholar] [CrossRef]
- Holmes, J.; Dutta, M.; Koeck, F.A.; Benipal, M.; Brown, J.; Fox, B.; Hathwar, R.; Johnson, H.; Malakoutian, M.; Saremi, M.; et al. A 4.5 μm PIN diamond diode for detecting slow neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 903, 297–301. [Google Scholar] [CrossRef]
- Field, J.E. The mechanical and strength properties of diamond. Rep. Prog. Phys. 2012, 75, 6505. [Google Scholar] [CrossRef] [PubMed]
- Piliero, M.A.; Hugtenburg, R.P.; Ryde, S.J.S.; Olivertitle, K. Development of CVD diamond detectors for clinical dosimetry. Radiat. Phys. Chem. 2014, 104, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Grot, S.A.; Gildenblat, G.S.; Hatfield, C.W.; Wronski, C.R.; Badzian, A.R.; Badzian, T.; Messiertitle, R. The Effect of Surface Treatment on the Electrical Properties of Metal Contacts to Boron-Doped Homoepitaxial Diamond Film. IEEE Electron. Device Lett. 1990, 11, 100–102. [Google Scholar] [CrossRef]
- Łoś, S.; Paprocki, K.; Fabisiak, K.; Szybowicz, M. The influence of the space charge on The Ohm’s law conservation in CVD diamond layers. Carbon 2019, 143, 413–418. [Google Scholar]
- Fabisiak, K.; Kowalska, M.; Szybowicz, M.; Paprocki, K.; Popielarski, P.; Wrzyszczynski, A.; Mosinska, L.; Zhusupkalieva, G.K. The Undoped CVD Diamond Electrode: The Effect of Surface Pretreatment on its Electrochemical Properties. Adv. Eng. Mater. 2013, 11, 935–940. [Google Scholar] [CrossRef]
- Fabisiak, K.; Szreiber, M.; Uniszkiewicz, C.; Runka, T.; Kasprowicz, D. Electron paramagnetic resonance and Raman spectroscopy characterization of diamond films fabricated by HF CVD method. Cryst. Res. Technol. 2010, 45, 167–172. [Google Scholar] [CrossRef]
- Fabisiak, K.; Torz-Piotrowska, R.; Staryga, E.; Szybowicz, M.; Paprocki, K.; Banaszak, A.; Popielarski, P. The influence of working gas on CVD diamond quality. Mater. Sci. Eng. B 2012, 117, 1352–1357. [Google Scholar] [CrossRef]
- Torz-Piotrowska, R.; Fabisiak, K.; Paprocki, K.; Szybowicz, M.; Starygad, E.; Banaszak, A. Electrochemical properties of undoped CVD diamond films. J. Phys. Chem. Solids 2011, 72, 1225–1229. [Google Scholar] [CrossRef]
- Staryga, E.; Bąk, G.W.; Fabisiak, K.; Klimek, L.; Rylski, A.; Olborska, A.; Kozanecki, M.; Grabarczyk, J. Structure of diamond polycrystalline films deposited on silicon substrates. Vacuum 2010, 85, 518–522. [Google Scholar] [CrossRef]
- Paprocki, K.; Fabisiak, K.; Łoś, S.; Winnicki, J.; Malinowski, P.; Fabisiak, R.; Franków, W. Morphological, cathodoluminescence and thermoluminescence studies of defects in diamond films grown by HF CVD technique. Opt. Mater. 2020, 99, 109506. [Google Scholar] [CrossRef]
- Higashi, G.S.; Chabal, Y.J.; Trucks, G.W.; Raghavachari, K. Ideal hydrogen termination of the Si (111) surface. Appl. Phys. Lett. 1990, 56, 656. [Google Scholar] [CrossRef]
- Zatryb, G.; Klak, M.M.; Wojcik, J.; Misiewicz, J.; Mascher, P.; Podhorodecki, A. Effect of hydrogen passivation on the photoluminescence of Tb ion in silicon rich silicon oxide films. J. Appl. Phys. 2015, 118, 243104. [Google Scholar] [CrossRef]
- Landstrass, M.I.; Ravi, K.V. Hydrogen passivation of electrically active defects in diamond. Appl. Phys. Lett. 1989, 55, 1391. [Google Scholar] [CrossRef]
- Maki, T.; Shikama, S.; Komoriand, M.; Sakaguchi, Y.; Sakuta, K.; Kobayashi, T. Hydrogenating Effect of Single-Crystal Diamond Surface. Jpn. J. Appl. Phys. 1992, 31, L1446–L1449. [Google Scholar] [CrossRef]
- Hayashi, K.; Yamanaka, S.; Okushi, H.; Kajimura, K. Homoepitaxial diamond films with large terraces. Appl. Phys. Lett. 1996, 68, 1220. [Google Scholar] [CrossRef]
- Kawarada, H.; Sasaki, H.; Sato, A. Scanning-tunneling-microscope observation of the homoepitaxial diamond (001) 2×1 reconstruction observed under atmospheric pressure. Phys. Rev. B 1995, 55, 11351. [Google Scholar] [CrossRef]
- Yeargan, J.R.; Taylor, H.L. The Poole-Frenkel Effect with Compensation Present. J. Appl. Phys. 1968, 39, 5600. [Google Scholar] [CrossRef]
- Rottländer, P.; Hehn, M.; Schuhl, A. Determining the interfacial barrier height and its relation to tunnel magnetoresistance. Phys. Rev. B 2002, 65, 054422. [Google Scholar] [CrossRef]
- Weisse, J.M.; Marconnet, A.M.; Kim, D.R.; Rao, P.M.; Panzer, M.A.; Goodson, K.E.; Zheng, X. Thermal conductivity in porous silicon nanowire arrays. Nanoscale Res. Lett. 2012, 7, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barba-Ortega, J.; Londoño, F.A.; Joya, M.R. Lifetime of the phonons in the PLT ceramic. AIP Conf. Proc. 2014, 1627, 9–12. [Google Scholar]
- Domènech-Amador, N.; Cuscó, R.; Artús, L.; Yamaguchi, T.; Nanishi, Y. Raman scattering study of anharmonic phonon decay in InN. Phys. Rev. B 2011, 83, 245203. [Google Scholar] [CrossRef]
- Fontserè, A.; Pérez-Tomás, A.; Placidi, M.; Llobet, J.; Baron, N.; Chenot, S.; Cordier, Y.; Moreno, J.C.; Jennings, M.R.; Gammon, P.M.; et al. Nanoscale investigation of AlGaN/GaN-on-Si high electron mobility transistors. Nanotechnology 2012, 23, 395204. [Google Scholar] [CrossRef]
- Fauchet, P.M.; Campbel, I.H. Raman spectroscopy of dimensional semiconductor. Crit. Rev. Solid State Mater. Sci. 1988, 14, S79–S101. [Google Scholar] [CrossRef]
- Fabisiak, K. Analysis of Defects in Thin Polycrystalline Diamond Layers Obtained by CVD Methods. Ph.D. Thesis, Nicolaus Copernicus University, Toruń, Poland, 1994. [Google Scholar]
- Paprocki, K.; Fabisiak, K.; Bogdanowicz, R.; Gołuński, Ł.; Staryga, E.; Szybowicz, M.; Kowalska, M.; Banaszak-Piechowska, A. Charge-based deep level transient spectroscopy of B-doped and undoped polycrystalline diamond films. J. Mater. Sci. 2017, 52, 10119–10126. [Google Scholar] [CrossRef] [Green Version]
- Kawarada, H.; Yokota, Y.; Mori, Y.; Nishimura, K.; Hiraki, A. Cathodoluminescence and electroluminescence of undoped and boron-doped diamond formed by plasma chemical vapor deposition. J. Appl. Phys. 1990, 67, 983. [Google Scholar] [CrossRef]
- Snyder, C.W.; Orr, B.G.; Kessler, D.; Sander, L.M. Effect of strain on surface morphology in highly strained InGaAs films. Phys. Rev. Lett. 1991, 66, 3032. [Google Scholar] [CrossRef]
- Yokota, Y.; Kawarada, H.; Ma, J.S.; Nishimura, K.; Hiraki, A. Cathodoluminescence imaging of semiconducting diamond formed by plasma CVD. J. Cryst. Growth 1990, 103, 65–70. [Google Scholar] [CrossRef]
- Dean, P.J. Bound Excitons and Donor-Acceptor Pairs in Natural and Synthetic Diamond. Phys. Rev. 1965, 139, A588. [Google Scholar] [CrossRef]
- Hatta, A.; Ito, T.; Hiraki, A. Band-A emission in synthetic diamond films: A systematic investigation. Appl. Phys. Lett. 1996, 68, 1631. [Google Scholar]
- Takeuchi, D.; Watanabe, H.; Yamanaka, S.; Okushi, H.; Sawada, H.; Ichinose, H.; Sekiguchi, T.; Kajimura, K. Origin of band—A emission in diamond thin films. Phys. Rev. B 2001, 63, 245328. [Google Scholar] [CrossRef] [Green Version]
- Doherty, M.W.; Manson, N.B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollenberga, L.C.L. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 2013, 528, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Wassell, A.M.; McGuinness, C.D.; Hodges, C.; Lanigan, P.M.P.; Fisher, D.; Martineau, P.M.; Newton, M.E.; Lynch, S.A. Anomalous Green Luminescent Properties in CVD Synthetic Diamonds. Phys. Status Solidi A 2018, 215, 1800292. [Google Scholar] [CrossRef]
- Chaleawpong, R.; Promros, N.; Charoenyuenyao, P.; Hanada, T.; Ohmagari, S.; Zkria, A.; Yoshitake, T. Diode Parameters of Heterojunctions Comprising p-Type Ultrananocrystalline Diamond Films and n-Type Si Substrates. J. Nanosci. Nanotechnol. 2019, 19, 1567–1573. [Google Scholar] [CrossRef]
- El-Nahass, M.M.; Metwally, H.S.; El-Sayed, H.E.A.; Hassanien, A.M. Electrical conduction mechanisms of thermally evaporated 5,10,15, 20-tetraphenyl-21H, 23H-porphine iron (III) chloride thin films. Curr. Appl. Phys. 2014, 14, 161–165. [Google Scholar] [CrossRef]
- Phetchakul, T.; Kimura, H.; Akiba, Y.; Kurosu, T.; Iida, M. “Backward Diode” Characteristics of p-Type Diamond/n-Type Silicon Heterojunction Diodes. Jpn. J. Appl. Phys. 1996, 35, 4247–4252. [Google Scholar] [CrossRef]
- Brauna, A.; Munb, B.S.; Sund, Y.; Liu, Z.; Gröninga, O.; Mädera, R.; Erata, S.; Zhangf, X.; Maof, S.S.; Pomjakushinah, E.; et al. Correlation of conductivity and angle integrated valence band photoemissioncharacteristics in single crystal iron perovskites for 300 K < T < 800 K: Comparisonof surface and bulk sensitive methods. J. Electron Spectrosc. Relat. Phenom. 2010, 181, 56–62. [Google Scholar]
- Weima, J.A.; Borany, J.; Meusinger, K.; Horstmann, J.; Fahrnera, W.R. A comparative study of the I–V characteristics of diodes fabricated on as-grown and thermochemically polished CVD diamond films. Diam. Relat. Mater. 2003, 12, 1307–1314. [Google Scholar] [CrossRef]
- Wang, L.F.; Chen, X.M.; Zhang, Z.P.; Zhuang, J.Y.; Li, L. Fluorescent emission characteristics of polycrystalline diamond film prepared by direct current jet CVD. Optoelectron. Lett. 2009, 5, 356–358. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łoś, S.; Paprocki, K.; Szybowicz, M.; Fabisiak, K. The n–Si/p–CVD Diamond Heterojunction. Materials 2020, 13, 3530. https://doi.org/10.3390/ma13163530
Łoś S, Paprocki K, Szybowicz M, Fabisiak K. The n–Si/p–CVD Diamond Heterojunction. Materials. 2020; 13(16):3530. https://doi.org/10.3390/ma13163530
Chicago/Turabian StyleŁoś, Szymon, Kazimierz Paprocki, Mirosław Szybowicz, and Kazimierz Fabisiak. 2020. "The n–Si/p–CVD Diamond Heterojunction" Materials 13, no. 16: 3530. https://doi.org/10.3390/ma13163530
APA StyleŁoś, S., Paprocki, K., Szybowicz, M., & Fabisiak, K. (2020). The n–Si/p–CVD Diamond Heterojunction. Materials, 13(16), 3530. https://doi.org/10.3390/ma13163530