The Influence of the Strain and Stress Gradient in Determining Strain Fatigue Characteristics for Oscillatory Bending
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stress and Strain Gradient
2.2. Experimental Tests
2.3. Analysis
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Engler, O.; Tomé, C.N.; Huh, M.Y. A study of through-thickness texture gradients in rolled sheets. Metall. Mater. Trans. A 2000, 31, 2299–2315. [Google Scholar] [CrossRef]
- Aldazabal, J.; Sevillano, J.G. Hall-Petch behaviour induced by plastic strain gradients. Mater. Sci. Eng. A 2004, 365, 186–190. [Google Scholar] [CrossRef]
- Kurek, A.; Koziarska, J.; Kluger, K.; Łagoda, T. Fatigue life of 2017-T4 aluminium alloy under different types of stress. J. Mach. Constr. Maint. 2017, 4, 52–61. [Google Scholar]
- Troshchenko, V. High-cycle fatigue and inelasticity of metals. In ICBMFF4. Multiaxial Fatigue Design. ESIS 21; Mechanical Engineering Publications: London, UK, 1996; pp. 335–358. [Google Scholar]
- Manson, S.S.; Muralidharan, U. Fatigue life prediction in bending from axial fatigue information. Fatigue Fract. Eng. Mater. Struct. 1987, 9, 357–372. [Google Scholar] [CrossRef]
- Hassan, T.; Liu, Z. On the difference of fatigue strengths from rotating bending, four-point bending, and cantilever bending tests. Int. J. Press. Pip. 2001, 78, 19–30. [Google Scholar] [CrossRef]
- Megahed, M.M. Prediction of bending fatigue behaviour by the reference stress approach. Fatigue Fract. Eng. Mater. Struct. 1990, 13, 361–374. [Google Scholar] [CrossRef]
- Manson, S.S. Fatigue: A complex subject—some simple approximations. Exp. Mech. 1965, 5, 193–226. [Google Scholar] [CrossRef]
- Krzyżak, D.; Kurek, M.; Łagoda, T.; Sówka, D. Influence of changes of the bending plane position on the fatigue life. Mater. Werkst. 2014, 45, 1018–1029. [Google Scholar] [CrossRef]
- Ivanov, Y.F.; Alsaraeva, K.V.; Gromov, V.E.; Popova, N.A.; Konovalov, S.V. Fatigue life of silumin treated with a high-intensity pulsed electron beam. J. Surf. Investig. 2015, 9, 1056–1059. [Google Scholar] [CrossRef]
- Ivanov, Y.F.; Koval, N.N.; Gorbunov, S.V.; Vorobyov, S.V.; Konovalov, S.V.; Gromov, V.E. Multicyclic fatigue of stainless steel treated by a high-intensity electron beam: Surface layer structure. Russ. Phys. J. 2011, 54, 575–583. [Google Scholar] [CrossRef]
- Dorr, T.; Wagner, L. Influence of stress gradient on fatigue behavior of shot pending timetal 1100. In The Sixth International Conference on Shot Peening; Jack, C., Ed.; ICSP6: San Francisco, CA, USA, 1996; pp. 223–232. [Google Scholar]
- Gil Sevillano, J.; de las Cuevas, F. A comparison of the internal stresses in a transformation-induced plasticity-assisted steel and a twinning-induced plasticity steel. Mater. Sci. Technol. 2019, 35, 409–419. [Google Scholar] [CrossRef]
- Norberg, S.; Olsson, M. The effect of loaded volume and stress gradient on the fatigue limit. Int. J. Fatigue 2007, 29, 2259–2272. [Google Scholar] [CrossRef]
- Ashton, P.J.; Harte, A.M.; Leen, S.B. A strain gradient, crystal plasticity model for microstruktore-sensitive fretting crack initiation in ferritic-pearlitic steel for flexible marine risers. Int. J. Fatigue 2018, 111, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Kadi, N.; Pluvinage, G. Effective stress range in fatigue initiation emanating from notch, Fatigue ’99. Beijing Inst. Aeronaut. Mater. 1999, 2, 1175–1179. [Google Scholar]
- Adib, R.; Schmitt, C.; Pluvinage, G. Application of volumetric method to the assessment of damage inducted by action of foreign object on gas pipes. Strength Mater. 2006, 38, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Filippini, M. Stress gradient calculations at notches. Int. J. Fatigue 2000, 22, 397–409. [Google Scholar] [CrossRef]
- Milosevic, I.; Gerhard, W.; Grun, F.; Kober, M. Influence of size effect and stress gradient on the high-cycle fatigue strength of a 1.4542 steel. Procedia Eng. 2016, 160, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Kurek, A.; Koziarska, J.; Łagoda, T. Wytrzymałość zmęczeniowa materiałów konstrukcyjnych na zginanie wahadłowe i rozciąganie-ściskanie. In Proceedings of the 9-th International Symposium Mechanics of Materials and Structures, Augustów, Poland, 2–6 June 2017. [Google Scholar]
- Kurek, A.; Koziarska, J.; Kurek, M.; Kulesa, A.; Łagoda, T. Porównanie charakterystyk wytrzymałości zmęczeniowej wybranych stali dla rozciągania-ściskania i zginania wahadłowego. Transp. Przemysłowy I Masz. Rob. 2017, 3, 54–61. [Google Scholar]
- Niesłony, A.; Kurek, A. Influence of the selected fatigue characteristics of the material on calculated fatigue life under variable amplitude loading. In Applied Mechanics and Materials; Trans Tech Publications: Stafa-Zurich, Switzerland, 2012; Volume 104, pp. 197–205. [Google Scholar]
- Niesłony, A.; Kurek, A.; El Dsoki, C.; Kaufmann, H. A study of compatibility between two classical fatigue curve models based on some selected structural materials. Int. J. Fatigue 2012, 39, 88–94. [Google Scholar] [CrossRef]
- Basquin, O.H. The exponential law of endurance tests. Am. Soc. Test. Mater. Proc. 1910, 10, 625–630. [Google Scholar]
- Coffin, L.F. A study of the effect of cyclic thermal stresses on a ductile metal. Trans. ASME 1954, 76, 931–950. [Google Scholar]
- Ramberg, W.; Osgood, W.R. Description of Stress-Strain Curves by Three Parameters; University of Washington Libraries: Washington, WA, USA, 1943. [Google Scholar]
- Lachowicz, C.; Łagoda, T.; Macha, E.; Dragon, A.; Petit, J. Selections of algorithms for fatigue life calculation of elements made of 10HNAP steel under uniaxial random loadings. Studia Geotech. Mech. 1996, 18, 19–43. [Google Scholar]
- Łagoda, T.; Macha, E. Energy approach to fatigue under combined cyclic bending with torsion of smooth and notched specimens. Mater. Sci. 1998, 34, 630–639. [Google Scholar] [CrossRef]
- Boller, C.; Seeger, T. Materials Data for Cyclic Loading. In Parts AE; Elsevier Science Publishers: Amsterdam, The Netherlands, 1987; pp. 205–225. [Google Scholar]
- Kulesa, A.; Kurek, A.; Łagoda, T.; Achtelik, H.; Kluger, K. Low cycle fatigue of steel in strain controlled cyclic bending. Acta Mech. Autom. 2016, 10, 62–65. [Google Scholar]
- Sanetra, C. Untersuchungen zum Festigkeitsverhalten bei mehrachsiger Randombeans–pruchung unter Biegung und Torsion. Ph.D. Thesis, Universitat Clausthal, Clausthal, Germany, 1991. [Google Scholar]
- Kohut, M.; Łagoda, T. Badania zmęczeniowe mosiądzu MO58 w warunkach proporcjonalnego cyklicznego zginania ze skręcaniem. In Proceedings of the III Sympozjum Mechaniki Zniszczenia Materiałów i Konstrukcji, Augustów, Poland, 1–4 June 2005; pp. 159–162. [Google Scholar]
- Kohut, M.; Słowik, J. Badania zmęczeniowe mosiądzu Mo58 (B124, C38000 wg ASTM) przy kontrolowanym odkształceniu w jednoosiowym cyklicznym stanie obciążenia. Zeszyty Naukowe. Mechanika/Politechnika Opolska 2005, 85, 31–38. [Google Scholar]
- Lee, S.B. A criterion for fully reversed out of phase torsion and bending. In Multiaxial Fatigue; Miller, K.J., Brown, M.W., Eds.; ASTM International: Washington, DC, USA, 1985; pp. 553–568. [Google Scholar]
- Kardas, D.; Kluger, K.; Łagoda, T.; Ogonowski, P. Fatigue life under proportional constant amplitude bending with torsion in energy approach basic on aluminium alloy. Mater. Sci. 2017, 44, 541–549. [Google Scholar] [CrossRef]
- Będkowski, W.; Łagoda, T.; Słowik, J. Strain controlled tests for determining the change of the material fatigue parameters. Mater. Sci. 2007, 43, 492–498. [Google Scholar] [CrossRef]
- Niesłony, A.; Łagoda, T.; Walat, K.; Kurek, M. Multiaxial fatigue behaviour of AA6068 and AA2017A aluminium alloys under in-phase bending with torsion loading condition. Mater. Werkst. 2014, 45, 947–952. [Google Scholar] [CrossRef]
- Mroziński, St. Wyznaczanie własności niskocyklowych stopu aluminium PA4 w temperaturze otoczenia. Raport z badań. Ph.D. Thesis, UTP w Bydgoszczy, Bydgoszcz, Poland, 2012. (in Polish). [Google Scholar]
- Walat, K.; Łagoda, T. Trwałość zmęczeniowa elementów maszyn w płaszczyźnie krytycznej wyznaczonej przez ekstremum kowariancji naprężeń. In Studia i monografie. Z.294 Politechnika Opolska; Ofic. Wydaw. PO: Opole, Poland, 2011; pp. 91–105. [Google Scholar]
Material | Chemical Composition | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | P | S | Cr | Ni | Mo | Cu | Fe | Mg | Zn | Zr + Ti | Pb | Sn | Al | |
10HNAP | 0.115 | 0.41 | 0.71 | 0.082 | 0.028 | 0.81 | 1.90 | 0.30 | - | The rest | - | - | - | - | - | - |
30CrNiMo8 | 0.3 | 0.27 | 0.49 | 0.019 | 0.009 | 3.89 | 1.90 | 0.30 | - | The rest | - | - | - | - | - | - |
SM45C | 0.45 | 0.35 | 0.64 | 0.011 | 0.012 | - | - | - | - | The rest | - | - | - | - | - | - |
16Mo3 | 0.19 | 0.28 | 0.69 | 0.019 | 0.024 | - | - | 0.33 | - | The rest | - | - | - | - | - | - |
MO58 | - | - | - | - | - | - | Max 0.2 | - | 56–60 | Max 0.5 | - | The rest | - | 1–3.5 | Max 0.5 | Max 1 |
2017(A) | - | 0.2–0.8 | 0.4–1.0 | - | - | <0.10 | - | - | 3.5–4.5 | <0.7 | 0.4–1.0 | <0.25 | <0.25 | - | - | The rest |
6082 | - | 0.7–1.3 | 0.4–1.0 | - | - | <0.25 | - | - | <0.1 | <0.5 | 0.6–1.2 | <0.2 | <0.1 | - | - | The rest |
Material | Rp0.2 (MPa) | Rm (MPa) | A5 (%) | ν |
---|---|---|---|---|
10HNAP | 464 | 566 | 32 | 0.29 |
30CrNiMo8 | 795 | 1014 | 6.3 | 0.29 |
SM45C | 430 | 680 | 15 | 0.29 |
16Mo3 | 335 | 481 | 24 | 0.30 |
MO58 | 399 | 484 | - | 0.32 |
2017-T6 | 395 | 545 | 21 | 0.32 |
6082-T4 | 365 | 385 | 27.2 | 0.32 |
10HNAP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Testing Conditions | Material Constant | |||||||||
E (GPa) | Ramberg–Osgood | Basquin | Manson–Coffin–Basquin (MCB) | TRMS | ||||||
K’ (MPa) | n’ | A | m | σ’f (MPa) | ε’f | b | c | |||
Bending | 205 | - | - | 35.96 | 11.39 | - | - | - | - | - |
Bending (e–p) | - | - | 46.64 | 16.24 | 675 | 0.239 | −0.052 | −0.340 | 1.616 | |
Tension–compression | 853 | 0.156 | 29.07 | 9.57 | 685 | 0.245 | −0.063 | −0.399 | 1.114 | |
Bending (grad) | 58.51 | 21.41 | 501 | 0.0349 | −0.039 | −2569 | 1.152 |
30CrNiMo8 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Testing Conditions | Material Constant | |||||||||
E (GPa) | Ramberg–Osgood | Basquin | MCB | TRMS | ||||||
K’ (MPa) | n’ | A | m | σ’f (MPa) | ε’f | b | c | |||
Bending | 206 | - | - | 25.57 | 7.35 | - | - | - | - | |
Bending (e–p) | - | - | 52.07 | 17.30 | 911 | 0.602 | −0.045 | −0.548 | 1.229 | |
Tension–compression | 972 | 0.085 | 49.79 | 16.64 | 851 | 0.471 | −0.043 | −0.597 | 1.123 | |
Bending (grad) | - | - | 84.25 | 29.38 | 693 | 0.041 | −0.027 | −0.384 | 1.159 |
SM45C | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Testing Conditions | Material Constant | |||||||||
E (GPa) | Ramberg–Osgood | Basquin | MCB | TRMS | ||||||
K’ (MPa) | n’ | A | m | σ’f (MPa) | ε’f | b | c | |||
Bending | 201.5 | - | - | 31.13 | 10.29 | - | - | - | - | |
Bending (e–p) | - | - | 37.78 | 13.38 | 671 | 0.035 | −0.071 | −0.298 | 1.246 | |
Tension–compression | 1414 | 0.231 | 23.69 | 7.76 | 1140 | 0.406 | −0.122 | −0.53 | 1.067 | |
Bending (grad) | 44.02 | 16.18 | 527 | 0.009 | −0.058 | −0.224 | 1.168 |
16Mo3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Testing Conditions | Material Constant | |||||||||
E (GPa) | Ramberg–Osgood | Basquin | MCB | TRMS | ||||||
K’ (MPa) | n’ | A | m | σ’f (MPa) | ε’f | b | c | |||
Bending | 210 | - | - | 21.07 | 6.80 | - | - | - | - | |
Bending (e–p) | - | - | 24.91 | 8.40 | 980 | 0.769 | −0.116 | −0.580 | 1.250 | |
Tension–compression | 1038 | 0.133 | 27.94 | 9.67 | 780 | 0.233 | −0.096 | −0.473 | 1.106 | |
Bending (grad) | 26.47 | 9.05 | 884 | 0.071 | −0.107 | −0.635 | 1.244 |
MO58 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Testing Conditions | Material Constant | |||||||||
E (GPa) | Ramberg–Osgood | Basquin | MCB | TRMS | ||||||
K’ (MPa) | n’ | A | m | σ’f (MPa) | ε’f | b | c | |||
Bending | 96.9 | - | - | 19.98 | 5.86 | - | - | - | - | |
Bending (e–p) | - | - | 25.06 | 8.04 | 1175 | 4.71 | −0.110 | −0.717 | 1.169 | |
Tension–compression | 723.3 | 0.121 | 50.92 | 18.59 | 549 | 0.11 | −0.049 | −0.434 | 1.091 | |
Bending (grad) | - | - | 25.76 | 8.3380 | 936 | 0.01 | −0.095 | −0.265 | 1.155 |
2017A-T4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Testing Conditions | Material Constant | |||||||||
E (GPa) | Ramberg–Osgood | Basquin | MCB | TRMS | ||||||
K’ (MPa) | n’ | A | m | σ’f (MPa) | ε’f | b | c | |||
Bending at the controlled moment | 72 | - | - | 25.59 | 8.65 | 738 | 1 | −0.095 | 0 | 1.498 |
Tension–compression | 617 | 0.066 | 35.55 | 12.54 | 553 | 0.193 | −0.044 | −0.678 | 1.158 | |
Bending (grad) | - | - | 25.59 | 8.65 | 738 | 1 | −0.095 | 0 | 1.498 |
6082-T6 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Testing Conditions | Material Constant | |||||||||
E (MPa) | Ramberg–Osgood | Basquin | MCB | TRMS | ||||||
K’ (MPa) | n’ | A | m | σ’f (MPa) | ε’f | b | c | |||
Bending at the controlled moment | 76.998 | - | - | 23.7053 | 7.9930 | 905 | 0.0530 | −0.116 | −0.610 | 1.179 |
Bending at the controlled moment (grad) | - | - | - | - | 687 | 0.0419 | −0.096 | −0.516 | 1.183 | |
Bending at the controlled strain | - | - | 25.1731 | 8.6950 | 768 | 0.2836 | −0.105 | 0.649 | 1.150 | |
Bending at the controlled strain (grad) | - | - | 26.47 | 9.28 | 696 | 0.0835 | −0.098 | −0.548 | 1.153 | |
Tension–compression | 616 | 0.099 | 37.5945 | 13.7902 | 533 | 0.185 | −0.065 | −0.634 | 1.050 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurek, A.; Koziarska, J.; Łagoda, T. The Influence of the Strain and Stress Gradient in Determining Strain Fatigue Characteristics for Oscillatory Bending. Materials 2020, 13, 173. https://doi.org/10.3390/ma13010173
Kurek A, Koziarska J, Łagoda T. The Influence of the Strain and Stress Gradient in Determining Strain Fatigue Characteristics for Oscillatory Bending. Materials. 2020; 13(1):173. https://doi.org/10.3390/ma13010173
Chicago/Turabian StyleKurek, Andrzej, Justyna Koziarska, and Tadeusz Łagoda. 2020. "The Influence of the Strain and Stress Gradient in Determining Strain Fatigue Characteristics for Oscillatory Bending" Materials 13, no. 1: 173. https://doi.org/10.3390/ma13010173
APA StyleKurek, A., Koziarska, J., & Łagoda, T. (2020). The Influence of the Strain and Stress Gradient in Determining Strain Fatigue Characteristics for Oscillatory Bending. Materials, 13(1), 173. https://doi.org/10.3390/ma13010173