Dynamic Compressive Behaviors of Two-Layer Graded Aluminum Foams under Blast Loading
Abstract
:1. Introduction
2. Experiments
2.1. Material Properties
2.2. Experimental Setup
2.3. Experimental Results
3. Numerical Simulation
3.1. Voronoi Technique
3.2. FE Model
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Li, F.; Sun, G.; Huang, X.; Rong, J.; Li, Q. Multiobjective robust optimization for crashworthiness design of foam filled thin-walled structures with random and interval uncertainties. Eng. Struct. 2015, 88, 111–124. [Google Scholar] [CrossRef]
- Yurddaskal, M.; Baba, B.O. The effect of curvature on the impact response of foam-based sandwich composite panels. Steel Compos. Struct. 2016, 20, 983–997. [Google Scholar] [CrossRef]
- Lopatnikov, S.L.; Gama, B.A.; Haque, M.J.; Krauthauser, C.; Gillespie, J.W., Jr. High-velocity plate impact of metal foams. Int. J. Impact Eng. 2004, 30, 421–445. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Q.M. Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling. Int. J. Impact Eng. 2018, 112, 74–115. [Google Scholar] [CrossRef]
- Linul, E.; Movahedi, N.; Marsavina, L. On the lateral compressive behavior of empty and ex-situ aluminum foam-filled tubes at high temperature. Materials 2018, 11, 554. [Google Scholar] [CrossRef]
- Main, J.A.; Gazonas, G.A. Uniaxial crushing of sandwich plates under air blast: Influence of mass distribution. Int. J. Solids Struct. 2008, 45, 2297–2321. [Google Scholar] [CrossRef]
- Li, Q.M.; Reid, S.R. About one-dimensional shock propagation in a cellular material. Int. J. Impact Eng. 2006, 32, 1898–1906. [Google Scholar] [CrossRef]
- Guruprasad, S.; Mukherjee, A. Layered sacrificial claddings under blast loading part i—Analytical studies. Int. J. Impact Eng. 2000, 24, 957–973. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Wang, Z.; Wu, G.; Lu, G.; Zhao, L. Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading. Compos. Part A Appl. Sci. Manuf. 2016, 80, 1–12. [Google Scholar] [CrossRef]
- Liang, M.; Lu, F.; Zhang, G.; Li, X. Experimental and numerical study of aluminum foam-cored sandwich tubes subjected to internal air blast. Compos. Part B 2017, 125, 134–143. [Google Scholar] [CrossRef]
- Kováčik, J.; Marsavina, L.; Linul, E. Poisson’s ratio of closed-cell aluminium foams. Materials 2018, 11, 1904. [Google Scholar] [CrossRef] [PubMed]
- Guruprasad, S.; Mukherjee, A. Layered sacrificial claddings under blast loading part ii—Experimental studies. Int. J. Impact Eng. 2000, 24, 975–984. [Google Scholar] [CrossRef]
- Hanssen, A.G.; Enstock, L.; Langseth, M. Close-range blast loading of aluminium foam panels. Int. J. Impact Eng. 2002, 27, 593–618. [Google Scholar] [CrossRef]
- Li, Q.M.; Meng, H. Attenuation or enhancement—A one-dimensional analysis on shock transmission in the solid phase of a cellular material. Int. J. Impact Eng. 2002, 27, 1049–1065. [Google Scholar] [CrossRef]
- Karagiozova, D.; Alves, M. On the dynamic compression of cellular materials with local structural softening. Int. J. Impact Eng. 2017, 108, 153–170. [Google Scholar] [CrossRef]
- Merrett, R.P.; Langdon, G.S.; Theobald, M.D. The blast and impact loading of aluminium foam. Mater. Des. 2013, 44, 311–319. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, J.; Lu, G.; Zhao, L. Compressive behavior of closed-cell aluminum alloy foams at medium strain rates. Mater. Sci. Eng. A 2011, 528, 2326–2330. [Google Scholar] [CrossRef]
- Zheng, J.; Qin, Q.; Wang, T.J. Impact plastic crushing and design of density-graded cellular materials. Mech. Mater. 2016, 94, 66–78. [Google Scholar] [CrossRef]
- Liu, J.; Hou, B.; Lu, F.; Zhao, H. A theoretical study of shock front propagation in the density graded cellular rods. Int. J. Impact Eng. 2015, 80, 133–142. [Google Scholar] [CrossRef]
- Karagiozova, D.; Alves, M. Stress waves in layered cellular materials—Dynamic compaction under axial impact. Int. J. Mech. Sci. 2015, 101, 196–213. [Google Scholar] [CrossRef]
- Liang, M.Z.; Lu, F.Y.; Zhang, G.D.; Li, X.Y. Design of stepwise foam claddings subjected to air-blast based on voronoi model. Steel Compos. Struct. 2017, 23, 107–114. [Google Scholar] [CrossRef]
- Liang, M.; Li, X.; Lin, Y.; Lu, F. Compaction wave propagation in layered cellular materials under air-blast. Int. J. Appl. Mech. 2019, 11, 1950003. [Google Scholar] [CrossRef]
- Shen, C.J.; Lu, G.; Yu, T.X. Investigation into the behavior of a graded cellular rod under impact. Int. J. Impact Eng. 2014, 74, 92–106. [Google Scholar] [CrossRef]
- Darvizeh, R.; Davey, K. A transport approach for analysis of shock waves in cellular materials. Int. J. Impact Eng. 2015, 82, 59–73. [Google Scholar] [CrossRef]
- Wang, P.; Xu, S.; Li, Z.; Yang, J.; Zhang, C.; Zheng, H.; Hu, S. Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading. Mater. Sci. Eng. A 2015, 620, 253–261. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Zhao, L. Dynamic response of functionally graded cellular materials based on the voronoi model. Compos. Part B Eng. 2016, 85, 176–187. [Google Scholar] [CrossRef]
- Ma, G.W.; Ye, Z.Q. Energy absorption of double-layer foam cladding for blast alleviation. Int. J. Impact Eng. 2007, 34, 329–347. [Google Scholar] [CrossRef]
- Wang, E.; Gardner, N.; Shukla, A. The blast resistance of sandwich composites with stepwise graded cores. Int. J. Solids Struct. 2009, 46, 3492–3502. [Google Scholar] [CrossRef]
- Karagiozova, D.; Alves, M. Propagation of compaction waves in cellular materials with continuously varying density. Int. J. Solids Struct. 2015, 71, 323–337. [Google Scholar] [CrossRef]
- Liao, S.; Zheng, Z.; Yu, J. On the local nature of the strain field calculation method for measuring heterogeneous deformation of cellular materials. Int. J. Solids Struct. 2014, 51, 478–490. [Google Scholar] [CrossRef]
- Cao, B.T.; Hou, B.; Zhao, H.; Li, Y.L.; Liu, J.G. On the influence of the property gradient on the impact behavior of graded multilayer sandwich with corrugated cores. Int. J. Impact Eng. 2018, 113, 98–105. [Google Scholar] [CrossRef]
- Liang, M.Z.; Li, Z.B.; Lu, F.Y.; Li, X.Y. Theoretical and numerical investigation of blast responses of continuous-density graded cellular materials. Compos. Struct. 2017, 164, 170–179. [Google Scholar] [CrossRef]
- Chen, D.; Jing, L.; Yang, F. Optimal design of sandwich panels with layered-gradient aluminum foam cores under air-blast loading. Compos. Part B 2019, 166, 169–186. [Google Scholar] [CrossRef]
- ISO 13314: 2011 International Organization for Standardization. Mechanical Testing of Metals-Ductility Testing-Compression Test for Porous and Cellular Metals; ISO: Geneva, Switzerland, 2011.
- Hibbitt, Karlsson & Sorensen, Inc. Abaqus/Explicit User’s Manual. Version 6.9-3; Dassault Systemes Simulia Corp: Providence, RI, USA, 2010. [Google Scholar]
- Zheng, Z.; Wang, C.; Yu, J.; Reid, S.R.; Harrigan, J.J. Dynamic stress–strain states for metal foams using a 3d cellular model. J. Mech. Phys. Solids 2014, 72, 93–114. [Google Scholar] [CrossRef]
- Zheng, Z.; Yu, J.; Li, J. Dynamic crushing of 2d cellular structures: A finite element study. Int. J. Impact Eng. 2005, 32, 650–664. [Google Scholar] [CrossRef]
- Zhang, K.; Liang, M.; Lu, F.; Li, X. Mechanics of plate fracture from detonation wave interaction. Propellants Explos. Pyrotech. 2018, 43, 1–11. [Google Scholar] [CrossRef]
- Shen, C.J.; Yu, T.X.; Lu, G. Double shock mode in graded cellular rod under impact. Int. J. Solids Struct. 2013, 50, 217–233. [Google Scholar] [CrossRef]
- Barnes, A.T.; Ravi-Chandar, K.; Kyriakides, S.; Gaitanaros, S. Dynamic crushing of aluminum foams: Part i—Experiments. Int. J. Solids Struct. 2014, 51, 1631–1645. [Google Scholar] [CrossRef]
- Reid, S.R.; Peng, C. Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 1997, 19, 531–570. [Google Scholar] [CrossRef]
- Harrigan, J.J.; Reid, S.R.; Seyed Yaghoubi, A. The correct analysis of shocks in a cellular material. Int. J. Impact Eng. 2010, 37, 918–927. [Google Scholar] [CrossRef]
Relative Density * | Yield Stress (MPa) | Standard Deviation (MPa) | Plateau Stress (MPa) | Standard Deviation (MPa) | Densification Strain | Standard Deviation |
---|---|---|---|---|---|---|
0.06 | 3.59 | 0.22 | 2.51 | 0.15 | 0.77 | 0.12 |
0.18 | 7.29 | 0.38 | 5.07 | 0.24 | 0.72 | 0.11 |
Test No. | TNT Charge (g) | Standoff Distance (mm) | Number of Layers | Specimen Gradient | Specimen Thickness (mm) | |
---|---|---|---|---|---|---|
Layer 1 | Layer 2 | |||||
1 | 100 | 200 | 2 | Positive | 20 | 20 |
2 | 100 | 200 | 2 | Negative | 20 | 20 |
Test No. | Specimen Gradient | Initial Thickness/(mm) | Thickness of Deformed Specimen/(mm) | Deformation/(mm) | |||
---|---|---|---|---|---|---|---|
Layer 1 | Layer 2 | Layer 1 | Layer 2 | Layer 1 | Layer 2 | ||
1 | Positive | 20 | 20 | 9 | 20 | 11 | 0 |
2 | Negative | 20 | 20 | 17 | 10 | 3 | 10 |
Base Material | Density/(kg/m3) | Young Modulus/(GPa) | Poisson Ratio | Yield Stress/(MPa) |
---|---|---|---|---|
Aluminum alloy | 2780 | 70 | 0.3 | 190 |
Charge | A (Mbar) | B (Mbar) | ω | R1 | R2 | Em0 (J/mm3) |
---|---|---|---|---|---|---|
TNT | 3.74 | 0.032 | 0.3 | 4.15 | 0.95 | 70 |
Results | Positive Foam/(mm) | Negative Foam/(mm) | ||
---|---|---|---|---|
Layer 1 | Layer 2 | Layer 1 | Layer 2 | |
Experimental results | 9 | 20 | 17 | 10 |
Simulation predictions | 9.2 | 20 | 17.1 | 9.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, M.; Li, X.; Lin, Y.; Zhang, K.; Lu, F. Dynamic Compressive Behaviors of Two-Layer Graded Aluminum Foams under Blast Loading. Materials 2019, 12, 1445. https://doi.org/10.3390/ma12091445
Liang M, Li X, Lin Y, Zhang K, Lu F. Dynamic Compressive Behaviors of Two-Layer Graded Aluminum Foams under Blast Loading. Materials. 2019; 12(9):1445. https://doi.org/10.3390/ma12091445
Chicago/Turabian StyleLiang, Minzu, Xiangyu Li, Yuliang Lin, Kefan Zhang, and Fangyun Lu. 2019. "Dynamic Compressive Behaviors of Two-Layer Graded Aluminum Foams under Blast Loading" Materials 12, no. 9: 1445. https://doi.org/10.3390/ma12091445
APA StyleLiang, M., Li, X., Lin, Y., Zhang, K., & Lu, F. (2019). Dynamic Compressive Behaviors of Two-Layer Graded Aluminum Foams under Blast Loading. Materials, 12(9), 1445. https://doi.org/10.3390/ma12091445