Preparation, Mechanical Properties, and High-Temperature Wear Resistance of Ti–Al–B alloy
Abstract
:1. Introduction
2. Experimental Process
3. Results and Discussion
3.1. Microstructure and Mechanical Properties of Alloys
3.2. High-Temperature Tribological Properties
3.3. Wear Surface Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saketi, S.; Odelros, S.; Ostby, J.; Olsson, M. Experimental Study of Wear Mechanisms of Cemented Carbide in the Turning of Ti6Al4V. Materials 2019, 12, 2822. [Google Scholar] [CrossRef] [PubMed]
- Morita, T.; Asakura, K.; Kagaya, C. Effect of combination treatment on wear resistance and strength of Ti–6Al–4V alloy. Mater. Sci. Eng. A 2014, 618, 438–446. [Google Scholar] [CrossRef]
- Frutos, E.; Karlik, M.; Polcar, T. The role of α″ orthorhombic phase content on the tenacity and fracture toughness behavior of Ti-22Nb-10Zr coating used in the design of long-term medical implants. Appl. Surf. Sci. 2019, 464, 328–336. [Google Scholar] [CrossRef]
- Liu, D.S.; Zhang, Y.; Luo, M.; Zhang, D.H. Investigation of Tool Wear and Chip Morphology in Dry Trochoidal Milling of Titanium Alloy Ti–6Al–4V. Materials 2019, 12, 1937. [Google Scholar] [CrossRef]
- Haftlang, F.; Abbas, Z.H.; Abedi, H. The wear induced crystallographic texture transition in Ti-29Nb-14Ta-4.5Zr alloy. Appl. Surf. Sci. 2019, 491, 360–373. [Google Scholar] [CrossRef]
- Couret, A.; Voisin, T.; Thomas, M.; Monchoux, J.P. Development of a TiAl Alloy by Spark Plasma Sintering. JOM 2017, 69, 2576–2582. [Google Scholar] [CrossRef]
- Rastkar, A.; Bloyce, A.; Bell, T. Sliding wear behaviour of two gamma-based titanium aluminides. Wear 2000, 240, 19–26. [Google Scholar] [CrossRef]
- Li, C.; Xia, J.; Dong, H. Sliding wear of TiAl intermetallics against steel and ceramics of Al2O3, Si3N4 and WC/Co. Wear 2006, 261, 693–701. [Google Scholar] [CrossRef]
- Maja, M.E.; Falodun, O.E.; Obadele, B.A.; Oke, S.R.; Olubambi, P.A. Nanoindentation studies on TiN nanoceramic reinforced Ti–6Al–4V matrix composite. Ceram. Int. 2018, 44, 4419–4425. [Google Scholar] [CrossRef]
- Rao, K.P.; Vyas, A. Comparison of titanium silicide and carbide reinforced in situ synthesized TiAl composites and their mechanical properties. Intermetallics 2011, 19, 1236–1242. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, S.Y.; Yu, Y.; Yang, J.; Liu, W.M. Microstructure, mechanical and tribological properties of TiAl-based composites reinforced with high volume fraction of nearly networkTi2AlC particulates. J. Mater. Sci. Technol. 2018, 34, 670–678. [Google Scholar] [CrossRef]
- Yao, J.; Shi, X.; Zhai, W.; Ibrahim, A.M.M.; Xu, Z.; Song, S.; Chen, L.; Zhu, Q.; Xiao, Y.; Zhang, Q. Effect of TiB2 on Tribological Properties of TiAl Self-lubricating Composites Containing Ag at Elevated Temperature. J. Mater. Eng. Perform. 2015, 24, 307–318. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, Y.P.; Hua, X.H.; Yang, Z.H. High-temperature anti-wear behavior of alumina-reinforced Ti–Zr–Mo alloy composites. Wear 2014, 319, 184–190. [Google Scholar] [CrossRef]
- Fu, L.C.; Yang, J.; Bi, Q.L.; Zhu, S.Y.; Liu, W.M. Dry-sliding Tribological Properties of Nano-Eutectic Fe83B17 Alloy. Tribol. Lett. 2009, 34, 185–191. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, A.H.; Zhang, Z.; Xia, H.B.; Wang, Y.N. Microstructure, wear resistance and cell proliferation ability of in situ synthesized Ti–B coating produced by laser alloying. Opt. Laser Technol. 2015, 67, 176–182. [Google Scholar] [CrossRef]
- Dixit, T.; Singh, I.; Prasad, K.E. Room and high temperature dry sliding wear behavior of Boron modified as cast Ti-6Al-4V alloys against hardened steel. Wear 2019, 420–421, 207–214. [Google Scholar] [CrossRef]
- Zhai, W.Z.; Shi, X.L.; Wang, M.; Xu, Z.Z.; Yao, J.; Song, S.Y.; Zhang, Q.X. Friction and Wear Properties of TiAl-Ti3SiC2-MoS2 Composites Prepared by Spark Plasma Sintering. Tribol. Trans. 2014, 57, 416–424. [Google Scholar] [CrossRef]
- Shi, X.L.; Xu, Z.S.; Wang, M.; Zhai, W.Z.; Yao, J.; Song, S.Y.; Din, A.Q.; Zhang, Q.X. Tribological behavior of TiAl matrix self-lubricating composites containing silver from 25 to 800 °C. Wear 2013, 303, 486–494. [Google Scholar] [CrossRef]
- Yang, K.; Ma, H.R.; Liu, X.Y.; Zhang, Y.M.; He, Q. Multiwalled carbon nanotubes enhanced the friction layer evolution and self-lubricating property of TiAl-10 wt% Ag-1 wt% MWCNTs sample. RSC Adv. 2017, 7, 40592–40599. [Google Scholar] [CrossRef]
- Zou, J.L.; Shi, X.L.; Shen, Q.; Yang, K.; Zhai, W.Z.; Huang, Y.H. Dry Sliding Wear of TiAl-Graphene-Silver Composite at Elevated Temperatures. Jmepeg 2017, 26, 4615–4625. [Google Scholar] [CrossRef]
- Shi, X.L.; Yao, J.; Xu, Z.S.; Zhai, W.Z.; Song, S.Y.; Wang, M.; Zhang, Q.X. Tribological performance of TiAl matrix self-lubricating composites containing Ag, Ti3SiC2 and BaF2/CaF2 tested from room temperature to 600 °C. Mater. Des. 2014, 53, 620–633. [Google Scholar] [CrossRef]
- Xue, B.; Xu, Z.S.; Zhang, Q.X.; Shi, X.L.; Wang, M.; Zhai, W.Z.; Yao, J.; Song, S.Y. Tribological properties of TiAl-Ti3SiC2 composites. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2014, 29, 256–263. [Google Scholar] [CrossRef]
- Xu, Z.S.; Shi, X.L.; Zhang, Q.X.; Zhai, W.Z.; Li, X.X.; Yao, J.; Chen, L.; Zhu, Q.S.; Xiao, Y.H. Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-lubricating Composites. Tribol. Lett. 2014, 55, 393–404. [Google Scholar] [CrossRef]
- Wang, D.Q.; Sun, D.L.; Wang, H.Q.; Zhang, N.B. Investigation on Tribological Behavior of Ti2AlN/TiAl Composite at Room and Elevated Temperature. Tribol. Lett. 2018, 66, 52. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Z.; Wang, G.Q.; Wang, L.; Zhang, G.J. Microstructure evolution of polycrystalline Ti2AlN MAX phase film during post-deposition annealing. J. Eur. Ceram. Soc. 2018, 38, 4892–4898. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Zhou, Y.; Li, X.X.; Wang, L.; Cui, X.H.; Wang, S.Q. Accelerated Formation of Tribo-oxide Layer and Its Effect on Sliding Wear of a Titanium Alloy. Tribol. Lett. 2016, 63, 2. [Google Scholar] [CrossRef]
- Hou, G.L.; An, Y.L.; Zhao, X.Q.; Zhou, H.D.; Chen, J.M. Effect of alumina dispersion on oxidation behavior as well as friction and wear behavior of HVOF-sprayed CoCrAlYTaCSi coating at elevated temperature up to 1000 °C. Acta Mater. 2015, 95, 164–175. [Google Scholar] [CrossRef]
- Xu, Z.S.; Shi, X.L.; Zhang, Q.X.; Zhai, W.Z.; Li, X.X.; Yao, J.; Song, S.Y.; Chen, L.; Xiao, Y.C.; Zhu, Q.S. Wear and Friction of TiAl Matrix Self-Lubricating Composites against Si3N4 in Air at Room and Elevated Temperatures. Tribol. Trans. 2014, 57, 1017–1027. [Google Scholar] [CrossRef]
- Radu, I.; Li, D.Y.; Llewellyn, R. Tribological behavior of Stellite 21 modified with yttrium. Wear 2004, 257, 1154–1166. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and rubbing of flat surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Li, G.; Qu, S.G.; Pan, Y.X.; Li, X.Q. Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti-6Al-4V alloy. Appl. Surf. Sci. 2016, 389, 324–334. [Google Scholar] [CrossRef]
- Alidokht, S.A.; Munagala, V.N.V.; Chromik, R.R. Role of Third Bodies in Friction and Wear of Cold-Sprayed Ti and Ti–TiC Composite Coatings. Tribol. Lett. 2017, 65, 114. [Google Scholar] [CrossRef]
Specimens | Ti | Al | B |
---|---|---|---|
T | 78 | 22 | 0 |
TB | 71 | 20.8 | 8.2 |
Specimens | Hv (GPa) | Compressive Strength (MPa) | Bending Strength (MPa) | Density (g/cm3) | Porosity (%) |
---|---|---|---|---|---|
T | 6.71 ± 0.23 | 356 ± 9 | 317 ± 6 | 4.04 | 0.31 |
TB | 8.97 ± 0.41 | 873 ± 8 | 535 ± 8 | 3.70 | 0.34 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, G.; Liu, Y.; Gao, G.; Liu, H.; Li, S.; Kou, Z. Preparation, Mechanical Properties, and High-Temperature Wear Resistance of Ti–Al–B alloy. Materials 2019, 12, 3751. https://doi.org/10.3390/ma12223751
Cui G, Liu Y, Gao G, Liu H, Li S, Kou Z. Preparation, Mechanical Properties, and High-Temperature Wear Resistance of Ti–Al–B alloy. Materials. 2019; 12(22):3751. https://doi.org/10.3390/ma12223751
Chicago/Turabian StyleCui, Gongjun, Yanping Liu, Guijun Gao, Huiqiang Liu, Sai Li, and Ziming Kou. 2019. "Preparation, Mechanical Properties, and High-Temperature Wear Resistance of Ti–Al–B alloy" Materials 12, no. 22: 3751. https://doi.org/10.3390/ma12223751
APA StyleCui, G., Liu, Y., Gao, G., Liu, H., Li, S., & Kou, Z. (2019). Preparation, Mechanical Properties, and High-Temperature Wear Resistance of Ti–Al–B alloy. Materials, 12(22), 3751. https://doi.org/10.3390/ma12223751