Bending Strain and Bending Fatigue Lifetime of Flexible Metal Electrodes on Polymer Substrates
Abstract
1. Introduction
2. Experimental
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Forrest, S.R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Song, J.; Choi, W.M.; Kim, H.-S.; Kim, R.-H.; Liu, Z.; Huang, Y.Y.; Hwang, K.-C.; Zhang, Y.-W.; Rogers, J.A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. USA 2008, 105, 18675–18680. [Google Scholar] [CrossRef] [PubMed]
- Ahn, B.Y.; Duoss, E.B.; Motala, M.J.; Guo, X.; Park, S.-I.; Xiong, Y.; Yoon, J.; Nuzzo, R.G.; Rogers, J.A.; Lewis, J.A. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 2009, 323, 1590–1593. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-K.; Lee, Y.-J.; Yi, S.-M.; Kim, B.-J.; Joo, Y.-C. Effect of twisting fatigue on the electrical reliability of a metal interconnect on a flexible substrate. J. Mater. Res. 2017, 33, 138–148. [Google Scholar] [CrossRef]
- Li, T.; Suo, Z. Deformability of thin metal films on elastomer substrates. Int. J. Solids Struct. 2006, 43, 2351–2363. [Google Scholar] [CrossRef]
- Nix, W.D. Mechanical properties of thin films. Metall. Trans. A 1989, 20, 2217–2245. [Google Scholar] [CrossRef]
- Thompson, C.V. The yield stress of polycrystalline thin films. J. Mater. Res. 2011, 8, 237–238. [Google Scholar] [CrossRef]
- Nicola, L.; Xiang, Y.; Vlassak, J.J.; Van der Giessen, E.; Needleman, A. Plastic deformation of freestanding thin films: Experiments and modeling. J. Mech. Phys. Solids 2006, 54, 2089–2110. [Google Scholar] [CrossRef]
- Zhang, G.P.; Sun, K.H.; Zhang, B.; Gong, J.; Sun, C.; Wang, Z.G. Tensile and fatigue strength of ultrathin copper films. Mater. Sci. Eng. A 2008, 483, 387–390. [Google Scholar] [CrossRef]
- Gruber, P.A.; Böhm, J.; Onuseit, F.; Wanner, A.; Spolenak, R.; Arzt, E. Size effects on yield strength and strain hardening for ultra-thin Cu films with and without passivation: A study by synchrotron and bulge test techniques. Acta Mater. 2008, 56, 2318–2335. [Google Scholar] [CrossRef]
- Blanckenhagen, B.V.; Gumbsch, P.; Arzt, E. Dislocation sources in discrete dislocation simulations of thin-film plasticity and the Hall-Petch relation. Model. Simul. Mat. Sci. Eng. 2001, 9, 157–169. [Google Scholar] [CrossRef]
- Sim, G.-D.; Hwangbo, Y.; Kim, H.-H.; Lee, S.-B.; Vlassak, J.J. Fatigue of polymer-supported Ag thin films. Scr. Mater. 2012, 66, 915–918. [Google Scholar] [CrossRef]
- Von Blanckenhagen, B.; Gumbsch, P.; Arzt, E. Dislocation sources and the flow stress of polycrystalline thin metal films. Philos. Mag. Lett. 2003, 83, 1–8. [Google Scholar] [CrossRef]
- Kim, B.-J.; Cho, Y.; Jung, M.-S.; Shin, H.-A.S.; Moon, M.-W.; Han, H.N.; Nam, K.T.; Joo, Y.-C.; Choi, I.-S. Fatigue-Free, Electrically Reliable Copper Electrode with Nanohole Array. Small 2012, 8, 3300–3306. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-J.; Shin, H.-A.S.; Jung, S.-Y.; Cho, Y.; Kraft, O.; Choi, I.-S.; Joo, Y.-C. Crack nucleation during mechanical fatigue in thin metal films on flexible substrates. Acta Mater. 2013, 61, 3473–3481. [Google Scholar] [CrossRef]
- Kraft, O.; Schwaiger, R.; Wellner, P. Fatigue in thin films: Lifetime and damage formation. Mater. Sci. Eng. A 2001, 319–321, 919–923. [Google Scholar] [CrossRef]
- Schwaiger, R.; Dehm, G.; Kraft, O. Cyclic deformation of polycrystalline Cu films. Philos. Mag. 2003, 83, 693–710. [Google Scholar] [CrossRef]
- Watanabe, K.; Kariya, Y.; Yajima, N.; Obinata, K.; Hiroshima, Y.; Kikuchi, S.; Matsui, A.; Shimizu, H. Low-cycle fatigue testing and thermal fatigue life prediction of electroplated copper thin film for through hole via. Microelectron. Reliab. 2018, 82, 20–27. [Google Scholar] [CrossRef]
- Mao, L.; Meng, Q.; Ahmad, A.; Wei, Z. Mechanical Analyses and Structural Design Requirements for Flexible Energy Storage Devices. Adv. Energy Mater. 2017, 7, 1700535. [Google Scholar] [CrossRef]
- Gleskova, H.; Wagner, S.; Suo, Z. a-Si:H TFTs Made on Polyimide Foil by PE-CVD at 150 °C. MRS Proc. 2011, 508, 73–78. [Google Scholar] [CrossRef]
- Suo, Z.; Ma, E.Y.; Gleskova, H.; Wagner, S. Mechanics of rollable and foldable film-on-foil electronics. Appl. Phys. Lett. 1999, 74, 1177–1179. [Google Scholar] [CrossRef]
- Wendrock, H.; Brückner, W.; Hecker, M.; Koetter, T.G.; Schloerb, H. Room temperature grain growth in electroplated copper thin films. Microelectron. Reliab. 2000, 40, 1301–1304. [Google Scholar] [CrossRef]
- Kim, B.-J.; Shin, H.-A.S.; Lee, J.-H.; Yang, T.-Y.; Haas, T.; Gruber, P.; Choi, I.-S.; Kraft, O.; Joo, Y.-C. Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates. J. Mater. Res. 2014, 29, 2827–2834. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Uk Lee, Y.; Yeon, H.-W.; Shin, H.-A.S.; Evans, L.A.; Joo, Y.-C. Influences of semiconductor morphology on the mechanical fatigue behavior of flexible organic electronics. Appl. Phys. Lett. 2013, 103, 241904. [Google Scholar] [CrossRef]
- Printed Electronics-Part 202-5: Materials-Conductive Ink-Mechanical Bending Test of a Printed Conductive Layer on an Insulating Substrate; IEC 62899-202-5:2018; International Electrotechnical Commission: Geneva, Switzerland, 2018.
- Lu, N.; Suo, Z.; Vlassak, J.J. The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 2010, 58, 1679–1687. [Google Scholar] [CrossRef]
- Yu, D.Y.W.; Spaepen, F. The yield strength of thin copper films on Kapton. J. Appl. Phys. 2004, 95, 2991–2997. [Google Scholar] [CrossRef]
- Niu, R.M.; Liu, G.; Wang, C.; Zhang, G.; Ding, X.D.; Sun, J. Thickness dependent critical strain in submicron Cu films adherent to polymer substrate. Appl. Phys. Lett. 2007, 90, 161907. [Google Scholar] [CrossRef]
- Kraft, O.; Gruber, P.A.; Mönig, R.; Weygand, D. Plasticity in Confined Dimensions. Annu. Rev. Mater. Res. 2010, 40, 293–317. [Google Scholar] [CrossRef]
- Sun, X.J.; Wang, C.C.; Zhang, J.; Liu, G.; Zhang, G.J.; Ding, X.D.; Zhang, G.P.; Sun, J. Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates. J. Phys. D Appl. Phys. 2008, 41, 195404. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-W.; Lee, J.-S.; Kim, Y.-C.; Joo, Y.-C.; Kim, B.-J. Bending Strain and Bending Fatigue Lifetime of Flexible Metal Electrodes on Polymer Substrates. Materials 2019, 12, 2490. https://doi.org/10.3390/ma12152490
Kim T-W, Lee J-S, Kim Y-C, Joo Y-C, Kim B-J. Bending Strain and Bending Fatigue Lifetime of Flexible Metal Electrodes on Polymer Substrates. Materials. 2019; 12(15):2490. https://doi.org/10.3390/ma12152490
Chicago/Turabian StyleKim, Tae-Wook, Jong-Sung Lee, Young-Cheon Kim, Young-Chang Joo, and Byoung-Joon Kim. 2019. "Bending Strain and Bending Fatigue Lifetime of Flexible Metal Electrodes on Polymer Substrates" Materials 12, no. 15: 2490. https://doi.org/10.3390/ma12152490
APA StyleKim, T.-W., Lee, J.-S., Kim, Y.-C., Joo, Y.-C., & Kim, B.-J. (2019). Bending Strain and Bending Fatigue Lifetime of Flexible Metal Electrodes on Polymer Substrates. Materials, 12(15), 2490. https://doi.org/10.3390/ma12152490