Synthesis and Broadband Spectra Photocatalytic Properties of Bi2O2(CO3)1−xSx
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Bi2O2(CO3)1−xSx
2.2. Ultraviolet-Visible Light Photocatalytic Properties of Bi2O2(CO3)1−xSx
3. Materials and Methods
3.1. Preparation of the Precursor Powder Bi2O2CO3 via Hydrothermal Method
3.2. Preparation of Bi2O2(CO3)1−xSx by Chemical Bath Precipitation
3.3. Characterization
3.4. Photocatalytic Test
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Huang, B.B.; Dai, Y.; Whangbo, M.H. Plasmonic photocatalysts: Harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. 2012, 14, 9813–9825. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Zhang, L.S.; Chen, Z.G.; Hu, J.Q.; Li, S.J.; Wang, Z.H.; Liu, J.S.; Wang, X.C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef] [PubMed]
- Moniz, S.J.A.; Shevlin, S.A.; Martin, D.J.; Guo, Z.X.; Tang, J.W. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731–759. [Google Scholar] [CrossRef]
- Yu, J.G.; Low, J.X.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842. [Google Scholar] [CrossRef] [PubMed]
- Chava, R.K.; Do, J.Y.; Kang, M. Hydrothermal growth of two dimensional hierarchical MoS2 nanospheres on one dimensional CdS nanorods for high performance and stable visible photocatalytic H2 evolution. Appl. Surf. Sci. 2018, 433, 240–248. [Google Scholar] [CrossRef]
- Chava, R.K.; Do, J.Y.; Kang, M. Fabrication of CdS-Ag3PO4 heteronanostructures for improved visible photocatalytic hydrogen evolution. J. Alloys Compd. 2017, 727, 86–93. [Google Scholar] [CrossRef]
- Ye, L.Q.; Su, Y.R.; Jin, X.L.; Xie, H.Q.; Zhang, C. Recent advances in BiOX (X = Cl, Br and I) photocatalysts: Synthesis, modification, facet effects and mechanisms. Environ. Sci. Nano 2014, 1, 90–112. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, C.; Hu, R.; Zuo, X.; Nan, J.; Li, L.; Wang, L. Oxygen-rich bismuth oxyhalides: Generalized one-pot synthesis, band structures and visible light photocatalytic properties. J. Mater. Chem. 2012, 22, 22840–22843. [Google Scholar] [CrossRef]
- Kim, T.W.; Choi, K.S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 2000, 31, 11459–11467. [Google Scholar] [CrossRef]
- Zhou, L.; Jin, C.G.; Yu, Y.; Chi, F.L.; Ran, S.L.; Lv, Y.H. Molten salt synthesis of Bi2WO6 powders with enhanced visible-light induced photocatalytic activities. J. Alloys Compd. 2016, 680, 301–308. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, L.H.; Yang, L.X.; Lu, Z.D.; Wang, X.Y.; Xu, G.L.; Zhang, E.P.; Wang, H.B.; Kong, Z.; Xi, J.H.; et al. Controllable synthesis of Bi2WO6 (001)/TiO2 (001) heterostructure with enhanced photocatalytic activity. J. Alloys Compd. 2016, 676, 37–45. [Google Scholar] [CrossRef]
- Kalithasan, N.; Hari, C.B.; Rajesh, J.T. Photocatalytic efficiency of bismuth oxyhalide (Br, Cl and I) nanoplatesfor RhB dye degradation under LED irradiation. J. Ind. Eng. Chem. 2016, 34, 146–156. [Google Scholar]
- Zhang, H.; Yang, Y.; Zhou, Z.; Zhao, Y.; Liu, L. Enhanced photocatalytic properties in BiOBr nanosheets with dominantly exposed (102) facets. J. Phys. Chem. C 2014, 118, 14662–14669. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Zhang, G.; Wang, Y.; Zhang, H.; Huang, F. Thermal decomposition of bismuth oxysulfide from photoelectric Bi2O2S to Superconducting Bi4O4S3. ACS Appl. Mater. Interfaces 2015, 7, 4442–4448. [Google Scholar] [CrossRef] [PubMed]
- Pacquette, A.L.; Hagiwara, H.; Ishihara, T.; Gewirth, A.A. Fabrication of an oxysulfide of bismuth Bi2O2S and its photocatalytic activity in a Bi2O2S/In2O3 composite. J. Photochem. Photobiol. A Chem. 2014, 277, 27–36. [Google Scholar] [CrossRef]
- Tsunoda, Y.; Sugimoto, W.; Sugahara, Y. Intercalation behavior of n-alkylamines into a protonated from of a layered perovskite derived from aurivilius phase Bi2SrTa2O9. Chem. Mater. 2003, 15, 632–635. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, W.; Zhang, Q.; Cao, J.J.; Huang, R.J.; Ho, W.K.; Lee, S.C. In Situ fabrication of a-Bi2O3/(BiO)2CO3 nanoplateheterojunctions with tunable optical property and photocatalytic activity. Sci. Rep. 2016, 6, 23435. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.L.; Sun, Y.J.; Zhang, Y.X.; Dong, F. Fabrication, modification and application of (BiO)2CO3-based photocatalysts: A review. Appl. Surf. Sci. 2016, 365, 314–335. [Google Scholar] [CrossRef]
- Cheng, H.F.; Huang, B.B.; Yang, K.S.; Wang, Z.Y.; Qin, X.Y.; Zhang, X.Y.; Dai, Y. Facile template-free synthesis of Bi2O2CO3 hierarchical microflowers and their associated photocatalytic activity. J. Phys. Chem. C 2010, 11, 2167–2173. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Xiong, T.; Sun, Y.J.; Huang, H.W.; Wu, Z.B. Synergistic integration of thermocatalysis and photocatalysis on black defective (BiO)2CO3 microspheres. J. Mater. Chem. A 2015, 3, 18466–18474. [Google Scholar] [CrossRef]
- Huang, H.W.; Wang, J.J.; Dong, F.; Guo, Y.X.; Tian, N.; Zhang, Y.H.; Zhang, T.R. Highly Efficient Bi2O2CO3 Single-Crystal Lamellas with Dominantly Exposed {001} Facets. Cryst. Growth Des. 2015, 15, 534–537. [Google Scholar] [CrossRef]
- Huang, H.W.; Tian, N.; Jin, S.F.; Zhang, Y.H.; Wang, S.B. Syntheses, characterization and nonlinear optical properties of a bismuth subcarbonate Bi2O2CO3. Solid State Sci. 2014, 30, 1–5. [Google Scholar] [CrossRef]
- Madhusudan, P.; Ran, J.R.; Zhang, J.; Yu, J.G.; Liu, G. Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3nanocomposites with enhanced visible-light photocatalytic activity. Appl. Catal. B 2011, 110, 286–295. [Google Scholar] [CrossRef]
- Liang, N.; Zai, J.T.; Xu, M.; Zhu, Q.; Wei, X.; Qian, X.F. Novel Bi2S3/Bi2O2CO3 heterojunction photocatalysts with enhanced visible light responsive activity and wastewater treatment. J. Mater. Chem. A 2014, 2, 4208–4216. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, W.; Long, B.; Li, H.; Zhao, F.; Liu, Z.; Tong, Y.; Ji, H. Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions. Appl. Catal. B Environ. 2016, 185, 68–76. [Google Scholar] [CrossRef]
- Dong, F.; Li, Q.Y.; Sun, Y.J.; Ho, W.K. Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis. ACS Catal. 2014, 4, 4341–4350. [Google Scholar] [CrossRef]
- Xiong, T.; Huang, H.W.; Sun, Y.J.; Dong, F. In-Situ synthesis of a C-doped (BiO)2CO3 hierarchical self-assembly effectively promoting visible light photocatalysis. J. Mater. Chem. A 2015, 3, 6118–6127. [Google Scholar] [CrossRef]
- Huang, H.W.; Xiao, K.; Yu, S.X.; Dong, F.; Zhang, T.R.; Zhang, Y.H. Iodide surface decoration: An facile and efficacious approach to modulating the band energy level of semiconductors for high performance visible-light Photocatalysis. Chem. Commun. 2016, 52, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Li, Q.; Ho, W.; Wu, Z.B. The mechanism of enhanced visible light photocatalysis with micro-structurally optimized and graphene oxide coupled (BiO)2CO3. Chin. Sci. Bull. 2015, 60, 1915–1923. [Google Scholar]
- Li, Q.; Liu, H.; Dong, F.; Fu, M. Hydrothermal formation of N-doped (BiO)2CO3 honeycomb-like microspheres photocatalysts with bismuth citrate and Dicyandiamide as precursors. J. Colloid Interface Sci. 2013, 408, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Z.; Huang, B.; Yang, K.; Zhang, X.; Qin, X.; Dai, Y. Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet. Appl. Surf. Sci. 2010, 257, 172–175. [Google Scholar] [CrossRef]
- Chang, C.; Teng, F.; Liu, Z. Fully Understanding the Photochemical Properties of Bi2O2(CO3)1−xSx Nanosheets. Langmuir 2016, 32, 3811–3819. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, X.; Wang, J.; Dong, F.; Chu, P.K.; Zhang, T.; Zhang, Y. Anionic Group Self-Doping as a Promising Strategy: Band-Gap Engineering and Multi-Functional Applications of High-Performance CO32−-Doped Bi2O2CO3. ACS Catal. 2015, 5, 4094–4103. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, Y.; Wang, F.; Zhang, K.; Yu, S.; Cao, K. Polyaniline-Decorated {001} Facets of Bi2O2CO3Nanosheets: In Situ Oxygen Vacancy Formation and Enhanced Visible Light Photocatalytic Activity. ACS Appl. Mater. Interfaces 2015, 7, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Pawar, R.C.; Khare, V.; Lee, C.S. Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light. Dalton Trans. 2014, 43, 12514–12527. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Chen, Z.; Dong, C.; Zhao, Y.; Li, F.; Lu, G.Q.; Cheng, H.-M. Visible Light Photocatalyst: Iodine-Doped Mesoporous Titania with a Bicrystalline Framework. J. Phys. Chem. B 2006, 110, 20823–20828. [Google Scholar] [CrossRef] [PubMed]
M0 | M1 | M2 | M5 | M10 | M20 | |
---|---|---|---|---|---|---|
Surface area (m2/g) | 0.917 | 0.973 | 0.980 | 1.666 | 1.823 | 0.966 |
Percentage of crystallinity (%) | -- | 74.43 ± 0.96 | 65.62 ± 0.61 | 74.14 ± 0.88 | 77.31 ± 0.75 | 79.87 ± 1.75 |
M0 | M1 | M2 | M5 | M10 | M20 | |
---|---|---|---|---|---|---|
C K | 43.78 | 43.88 | 43.90 | 44.11 | 44.30 | 44.41 |
O K | 45.53 | 45.30 | 45.30 | 45.27 | 45.17 | 45.10 |
S K | -- | 0.04 | 0.06 | 0.11 | 0.24 | 0.29 |
Bi M | 10.69 | 10.78 | 10.74 | 10.51 | 10.29 | 10.20 |
x | 0 | 0.007 | 0.011 | 0.021 | 0.047 | 0.057 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; Wang, H.; Xu, H.; Qiao, L.; Luo, Y.; Lin, Y.; Nan, C. Synthesis and Broadband Spectra Photocatalytic Properties of Bi2O2(CO3)1−xSx. Materials 2018, 11, 791. https://doi.org/10.3390/ma11050791
Ding J, Wang H, Xu H, Qiao L, Luo Y, Lin Y, Nan C. Synthesis and Broadband Spectra Photocatalytic Properties of Bi2O2(CO3)1−xSx. Materials. 2018; 11(5):791. https://doi.org/10.3390/ma11050791
Chicago/Turabian StyleDing, Junping, Huanchun Wang, Haomin Xu, Lina Qiao, Yidong Luo, Yuanhua Lin, and Cewen Nan. 2018. "Synthesis and Broadband Spectra Photocatalytic Properties of Bi2O2(CO3)1−xSx" Materials 11, no. 5: 791. https://doi.org/10.3390/ma11050791