Understanding the Thermal Properties of Precursor-Ionomers to Optimize Fabrication Processes for Ionic Polymer-Metal Composites (IPMCs)
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Shahinpoor, M.; Kim, K.J. Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct. 2001, 10, 819–833. [Google Scholar] [CrossRef]
- Shahinpoor, M.; Bar-Cohen, Y.; Simpson, J.O.; Smith, J. Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—A review. Smart Mater. Struct. 1998, 7, R15–R30. [Google Scholar] [CrossRef]
- Oguro, K.; Kawami, Y.; Takenaka, H. Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. J. Micromach. Soc. 1992, 5, 27–30. [Google Scholar]
- Asaka, K.; Oguro, K. Bending of polyelectrolyte membrane platinum composites by electric stimuli. Part II. Response kinetics. J. Electroanal. Chem. 2000, 480, 186–198. [Google Scholar] [CrossRef]
- Shahinpoor, M.; Kim, K.J. Ionic polymer–metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct. 2004, 13, 1362–1388. [Google Scholar] [CrossRef]
- De Gennes, P.G.; Okumura, K.; Shahinpoor, M.; Kim, K.J. Mechanoelectric effects in ionic gels. Europhys. Lett. 2000, 50, 513–518. [Google Scholar] [CrossRef]
- Nemat-nasser, S.; Li, J.Y. Electromechanical response of ionic polymer-metal composites. J. Appl. Phys. 2000, 87, 3321–3331. [Google Scholar] [CrossRef]
- Jo, C.; Pugal, D.; Oh, I.K.; Kim, K.J.; Asaka, K. Recent advances in ionic polymer-metal composite actuators and their modeling and applications. Prog. Polym. Sci. 2013, 38, 1037–1066. [Google Scholar] [CrossRef]
- Palmre, V.; Pugal, D.; Kim, K.J.; Leang, K.K.; Asaka, K.; Aabloo, A. Nanothorn electrodes for ionic polymer-metal composite artificial muscles. Sci. Rep. 2014, 4, 6176. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.Y.; Gierke, T.D. Ion Clustering and Transport in Nafion Perfluorinated Membranes. J. Memb. Sci. 1983, 13, 307–326. [Google Scholar] [CrossRef]
- Trabia, S.; Olsen, Z.; Kim, K.J. Searching for a new ionomer for 3D printable ionic polymer–metal composites: Aquivion as a candidate. Smart Mater. Struct. 2017, 26, 115029. [Google Scholar] [CrossRef]
- Park, J.; Palmre, V.; Hwang, T.; Kim, K.; Yim, W.; Bae, C. Electromechanical performance and other characteristics of IPMCs fabricated with various commercially available ion exchange membranes. Smart Mater. Struct. 2014, 23, 74001. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.; Zhang, Q.M. Charge dynamics and bending actuation in Aquivion membrane swelled with ionic liquids. Polymer 2011, 52, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.B.; Cable, K.M.; Croley, T.L. Barriers to flow in semicrystalline ionomers. A procedure for preparing melt-processed perfluorosulfonate ionomer films and membranes. J. Memb. Sci. 1992, 75, 7–14. [Google Scholar] [CrossRef]
- Mauritz, K.A.; Moore, R.B. State of understanding of Nafion. Chem. Rev. 2004, 104, 4535–4585. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, S.H.; Kawano, Y. Thermal Behavior of Nafion Membrane. J. Therm. Anal. Calorim. 1999, 58, 569–577. [Google Scholar] [CrossRef]
- Zhao, Q.; Benziger, J. Mechanical properties of perfluoro sulfonated acids: The role of temperature and solute activity. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 915–925. [Google Scholar] [CrossRef]
- Grot, W. Properties. In Fluorinated Ionomers; William Andrew: Waltham, MA, USA, 2011; pp. 49–79. [Google Scholar]
- Elliott, J.A.; James, P.J.; McMaster, T.J.; Newton, J.M.; Elliott, A.M.S.; Hanna, S.; Miles, M.J. Hydrolysis of the Nafion® precursor studied by X-ray scattering and in-situ atomic force microscopy. e-Polymers 2001, 1, 1–11. [Google Scholar] [CrossRef]
- Pugal, D.D.; Stalbaum, T.; Palmre, V.; Kim, K.J. Modeling Ionic Polymer Metal Composites with COMSOL: Step-by-Step Guide. In RSC Smart Materials; RSC Publishing: London, UK, 2016; Volume 2016, Chapter 5; pp. 185–214. ISBN 9781782622581. [Google Scholar]
- Kim, M.H.; Glinka, C.J.; Grot, S.A.; Grot, W.G. SANS study of the effects of water vapor sorption on the nanoscale structure of perfluorinated sulfonic acid (NAFION) membranes. Macromolecules 2006, 39, 4775–4787. [Google Scholar] [CrossRef]
- Solvay Aquivion ® E87-05S. Data Sheet 2015. Available online: http://catalog.ides.com/Datasheet.aspx?I=92041&FMT=PDF&U=0&CULTURE=en-US&E=238317 (accessed on 15 August 2017).
- Grot, W. Manufacture. In Fluorinated Ionomers; William Andrew: Waltham, MA, USA, 2011; pp. 11–48. [Google Scholar]
- Solvay Aquivion ® P87S-SO2F. Data Sheet 2015. Available online: http://catalog.ides.com/Datasheet.aspx?I=92041&FMT=PDF&U=0&CULTURE=en-US&E=238476 (accessed on 23 October 2017).
- Stalbaum, T.; Pugal, D.; Nelson, S.E.; Palmre, V.; Kim, K.J.; Stalbaum, T.; Pugal, D.; Nelson, S.E.; Palmre, V.; Kim, K.J. Physics-based modeling of mechano-electric transduction of tube-shaped ionic polymer-metal composite. J. Appl. Phys. 2015, 117, 1–8. [Google Scholar] [CrossRef]
- Palmre, V.; Hubbard, J.J.; Fleming, M.; Pugal, D.; Kim, S.; Kim, K.J.; Leang, K.K. An IPMC-enabled bio-inspired bending/twisting fin for underwater applications. Smart Mater. Struct. 2013, 22, 14003. [Google Scholar] [CrossRef]
- Nelson, S.E. Feasibility Study of Custom Manufacturing Methods of Ionic Polymer-Metal Composite Sensors; University of Nevada: Las Vegas, NV, USA, 2013. [Google Scholar]
- Carrico, J.D.; Traeden, N.W.; Aureli, M.; Leang, K.K. Fused filament 3D printing of ionic polymer-metal composites (IPMCs). Smart Mater. Struct. 2015, 24, 125021. [Google Scholar] [CrossRef]
- Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Goodyer, S. Measuring Polymers Using a Rotational Rheometer in Oscillatory Mode 1–35; Anton Paar Ltd.: St Albans, UK, 2013. [Google Scholar]
- Shenoy, A.V.; Saini, D.R. Thermoplastic Melt Rheology and Processing (Plastics Engineering); CRC Press: Boca Raton, FL, USA, 1996; ISBN 082479723X. [Google Scholar]
- Hieber, C.A.; Chiang, H.H. Shear-rate-dependence modeling of polymer melt viscosity. Polym. Eng. Sci. 1992, 32, 931–938. [Google Scholar] [CrossRef]
Mechanical Characteristics | Aquivion | Nafion | ||
---|---|---|---|---|
Activated | Precursor | Activated | Precursor | |
Damping Coefficient (tan D) | 0.122 ± 0.000085 | 0.144 ± 0.00061 | 0.058 ± 0.00012 | 21.1 ± 8.74 |
Young’s Modulus (MPa) | 293 ± 0.14 | 574 ± 2.82 | 329 ± 0.42 | 3.57 ± 2.588 |
Ionomer | η0 (Pa s) | λ (s) | n | r2 |
---|---|---|---|---|
Nafion | 7.1 × 104 | 15.4 | 0.41 | 0.945 |
Aquivion | 8.4 × 104 | 21.5 | 0.56 | 0.977 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trabia, S.; Choi, K.; Olsen, Z.; Hwang, T.; Nam, J.-D.; Kim, K.J. Understanding the Thermal Properties of Precursor-Ionomers to Optimize Fabrication Processes for Ionic Polymer-Metal Composites (IPMCs). Materials 2018, 11, 665. https://doi.org/10.3390/ma11050665
Trabia S, Choi K, Olsen Z, Hwang T, Nam J-D, Kim KJ. Understanding the Thermal Properties of Precursor-Ionomers to Optimize Fabrication Processes for Ionic Polymer-Metal Composites (IPMCs). Materials. 2018; 11(5):665. https://doi.org/10.3390/ma11050665
Chicago/Turabian StyleTrabia, Sarah, Kisuk Choi, Zakai Olsen, Taeseon Hwang, Jae-Do Nam, and Kwang J. Kim. 2018. "Understanding the Thermal Properties of Precursor-Ionomers to Optimize Fabrication Processes for Ionic Polymer-Metal Composites (IPMCs)" Materials 11, no. 5: 665. https://doi.org/10.3390/ma11050665
APA StyleTrabia, S., Choi, K., Olsen, Z., Hwang, T., Nam, J.-D., & Kim, K. J. (2018). Understanding the Thermal Properties of Precursor-Ionomers to Optimize Fabrication Processes for Ionic Polymer-Metal Composites (IPMCs). Materials, 11(5), 665. https://doi.org/10.3390/ma11050665